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ABSTRACT

The introduction of next generation sequencing
methods in genome studies has made it possible
to shift research from a gene-centric approach to
a genome wide view. Although methods and tools
to detect single nucleotide polymorphisms are
becoming more mature, methods to identify and
visualize structural variation (SV) are still in their
infancy. Most genome browsers can only compare
a given sequence to a reference genome; therefore,
direct comparison of multiple individuals still
remains a challenge. Therefore, the implementation
of efficient approaches to explore and visualize SVs
and directly compare two or more individuals is de-
sirable. In this article, we present a visualization
approach that uses space-filling Hilbert curves to
explore SVs based on both read-depth and pair-
end information. An interactive open-source Java
application, called Meander, implements the
proposed methodology, and its functionality is
demonstrated using two cases. With Meander,
users can explore variations at different levels of
resolution and simultaneously compare up to four
different individuals against a common reference.
The application was developed using Java version
1.6 and Processing.org and can be run on any
platform. It can be found at http://homes.esat.
kuleuven.be/�bioiuser/meander.

INTRODUCTION

Recent advances of next generation sequencing techno-
logies (1,2) allow the identification of both balanced

(inversions, translocations) and unbalanced (deletions, du-
plications) structural variations (SVs) in the genome. The
identification and characterization of such variations is of
high importance in current genomic research, as it has been
shown that many of them play a significant role in various
disorders such as cancer (3). Currently, there are several
possible ways to identify and discover SVs in the genome
using different types of genomic data (4). First, read-depth
or depth-of-coverage can be used to infer the relative copy
number of genomic regions when compared with a refer-
ence sample. Second, the relative mapped position of read-
pair members, known as paired-end mapping, can be used
to find deletions, tandem duplications, inversions and
intra-chromosomal signatures. Finally, reads that span a
DNA breakpoint in the sample appear as split reads when
mapped to the reference genome. Several variant callers
based on read-depth, pair-end or their combination
already exist and are extensively reviewed by Alkan and
colleagues (5). Such callers store the results along with
the genomic information in flat files that are difficult to
process and interpret. Because such genomic data sets
range in scale from thousands to millions of data points
covering multiple gigabases of sequence, visualization
approaches need to cope with such a high complexity and
play a key role in revealing patterns of variation and rela-
tionships between experimental data sets.
Although most of the current visualization tools focus

on interpreting and annotating genomic data, only few of
them are designed for data exploration to generate new
knowledge and new hypotheses. Genome browsers, such
as the Ensembl (6), UCSC (7), GBrowse (8), Integrative
Genomics Viewer (9) and Integrated Genome Browser
(10), have been developed to support the visualization of
genomic contexts and plot data in a linear form along with
annotations, genomic features, scores and positions. Other
tools such as Circos (11), Gviz (12), GenomeGraphs (13),
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ggbio (14), Apollo (15), HilbertVis (16), GenomeComp (17),
Seevolution (18), Spark (19), Gremlin (20) and In-GAVsv
(21) are developed to tackle more targeted questions, such
as visualization of genomic data using 2D plots, graph-
based layouts and most often linear representations.
HilbertVis (16) and DHPC (22) are the tools most
closely related to our work, as they implement space-
filling Hilbert curves to show genomic data at higher reso-
lutions. Although these tools come with significant advan-
tages, many of them suffer from lack of interactivity,
ability to explore data at different resolutions or multi-
sample comparison; yet, they have many library
dependencies.
In this work, we present Meander, an application that

combines two different types of visualization to capture
inter/intra-chromosomal SVs based both on read-depth
and pair-end data. In the first type of visualization, a
single chromosome is presented linearly at low resolution
as a horizontal line like in most current genome browsers.
In the second type of representation, a Hilbert space-filling
curve is used to visualize a chromosome in a 2D panel at a
much higher level of detail using a folded (snake-like) con-
tinuous vector of 512� 512=262 144 pixels. This high
resolution allows visual detection of much smaller SV.
Meander can also simultaneously compare up to four
samples against one common reference genome. It comes
with a variety of interactive filters that make interactive
data exploration easier and the extraction of patterns
more targeted and efficient. In addition, Meander high-
lights variations that are supported by double evidence
of read-depth and pair-end signals to make unknown vari-
ation easier to detect. Although the concept of the space-
filling curves can be used to highlight various genomic
characteristics like for example in (23) where a Hilbert
curve is used to illustrate chromatin organization
features in Drosophila, the main aim of Meander is the
identification and annotation of SVs.

MATERIALS AND METHODS

The Hilbert curve

The theory of space-filling curves was first developed by
the mathematician Peano in 1890 (24). A space-filling
curve is a continuous mapping from a lower-dimensional
space into a higher-dimensional one (two-dimensions in
the case of Meander). A useful property of a space-filling
curve is that it visits all points in a region once it has
entered that region and points that are close together in
the original curve will be close together in the plane.
Although the inverse is not true, points that are close to
each other in the plane tend to be close to each other in the
original curve. One of the most used curves was proposed
by Hilbert in 1891 (25), who gave the first geometrical
interpretation. The Hilbert space-filling fractal curve
visits every point in a square grid with a size of 2N� 2N

(N> 0). Therefore, the points that belong to the Hilbert
curve are always 22N in number, where N denotes the fold
level. The curve, owing to its fractal geometry, always
splits an area into quarters, a procedure that can itera-
tively continue to infinity. Figure 1A shows the folding

of the curve across eight iterations for a plane of
29� 29=512� 512=262 144 pixels. Notably, for fold-
level N=9, every single pixel of the plane is covered.
Although a Hilbert curve can be generated for any
number of dimensions, in this article, we use a 2D
Hilbert curve to represent one chromosome at a time (9).

Implementation of the Hilbert curve

Let L={tj0� t� 512} denote the unit interval and
Q={(x,y)j0� x� 512, 0� y� 512} denote the unit
square. For each positive integer n, the interval L is parti-
tioned into 4n subintervals of length 4�n and the square Q
into 4n subsquares of side 2�n. The procedure is calculated
recursively, and a one-to-one correspondence between the
subintervals of L and the subsquares of Q is constructed so
that adjacent subintervals correspond to adjacent
subsquares. If the subinterval Lnk corresponds to a sub-
square Qnk at the n-th partition, then the four subintervals
of Lnk must correspond to the four subsquares of Qnk at
the (n+1)-st partition. The implementation of the algo-
rithm in Processing.org is shown in Figure 1B.

Application of the Hilbert curve to genomic data

Use of the Hilbert curve
Although many different visualization approaches to rep-
resent a genome have been proposed (26,27), in this article,
we use the continuous fractal Hilbert space-filling curve to
visualize a vector with millions of elements such as human
chromosome 1 (�249 000 000 bases) mainly for two
reasons. First, from a visual encoding point of view, two
loci that are close to each other on the chromosome will be
displayed close to each other in the plane, an important
characteristic of the Hilbert curve that does not break the
linear properties of a vector. The second and most import-
ant reason is the resolution gain to browse data at a higher
level of detail. For example, given such a vector, a linear
plot on a screen of, say, 1000–1200 pixels wide can only
depict a whole chromosome at very low resolution. On the
contrary, as a Hilbert curve can fold on a 2D plane of
512� 512=262 144 pixels in size, we achieve a gain of
�250 times in resolution (Figure 2A). Areas with high
signal values, which may be overlooked in the linear repre-
sentation owing to the low resolution appear as bigger
dense blocks of many pixels in the Hilbert curve.

Bucketing and colour mapping
Given a linear vector of millions of values such as the
read-depth signal for a chromosome, we first split this
vector into bins of equal size according to the number of
pixels available. In a second step, an average signal value
of the coverage signal is calculated for each of these
segments and assigned to the corresponding bin. For
example, in a linear representation (i.e. 1200 pixels), the
human chromosome 1 (�249 000 000 bases) will be split
into 1200 bins and plotted at a �243 165 bases/pixel reso-
lution, whereas in a Hilbert view (512� 512 pixels),
the chromosome will be split into 262 144 bins and
plotted at a much higher resolution of 950 bases/pixel
(Figure 2A), effectively gaining a �256-fold increase in
resolution. Although in a linear plot, the height of the
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bar represents the strength of the bucket signal, in the
Hilbert representation, each pixel is assigned a colour
with scaled transparency according to the coverage
(Figure 2B). Thus, the darker the pixel colour appears,
the higher the coverage is and vice versa. Notably, white
areas indicate zeros as coverage or absence of data as the
length of a chromosome does not follow the required 22N

length for a Hilbert curve. In the case of sequencing gaps
where the coverage value is zero, we assign a white RGB
(255 255 255) colour to the corresponding pixels. For
example, such coverage gaps are often observed in
chromosomal regions such as the centromere, where,
often, no DNA sequence is defined. In the second case
of absence of data, a white colour is assigned to the
pixels of the Hilbert curve, which do not hold any

information and do not correspond to any of the
chromosome parts. Notably, these pixels always appear
in the bottom left corner of the panel where the Hilbert
curve finishes. Such behaviour is expected, as a Hilbert
curve’s length does not correspond to the physical
chromosome length. A Hilbert curve should always have
a defined length of 4N, N> 0, whereas a physical chromo-
some does not obey this mathematical rule.

Comparing two plots
As it is difficult to visually observe signal losses or gains
when comparing two different Hilbert plots of two
samples (Figure 2C), the log2(sample/reference) ratio
between the two individuals is used for a direct compari-
son. When the signal of a sample is higher than the signal

Figure 1. Folding levels of a Hilbert curve. The number of the edges of the Hilbert curve is 4N, where N denotes the fold level. For a canvas of
29� 29=512� 512=262 144 pixel dimension, the fold level N=9 covers every pixel of the plane.
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of the reference, a blue colour is assigned by default, and
the transparency of the colour is adjusted according to the
ratio’s absolute value. Similarly, when the signal of the
sample is lower than the signal of the reference, a yellow
colour with adjusted transparency is assigned to each
pixel. In both cases, the higher the absolute value of the
ratio, the darker the colour (Figure 2C).

Meander application

Read-pair and pair-end data
Meander supports visualization of SVs based both on read-
pair and pair-end data. In the linear representation, the bar
height indicates the value of the log2(sample/reference)
ratio. Negative ratios (red pixels) indicate possible deletions
in the sample, whereas positive ratios (blue pixels) indicate
possible duplications. Aberrantly, mapped pair-end data

can indicate the presence of balanced as well as unbalanced
variations. Meander, therefore, also links these together,
both in the Hilbert and the linear views. Because the
Hilbert curve only displays a single chromosome at a
time, these links cannot be shown in cases where the
partners of a paired-end lie on different chromosomes. To
solve this issue, the whole genome split in chromosomes is
schematically represented as a rectangle, wrapped around
the main Hilbert plot, (see left part of Figure 3B), to allow
direct linking between the position of the one paired end
that corresponds to the loaded chromosome and the other
paired end that corresponds to another chromosome of the
same organism.

The graphical user interface
Meander uses four smaller panels to hold the read-depth
and pair-end information for up to four different samples.

Figure 2. Space filling curves in genomic data. (A) Resolution gain comparing the linear with the Hilbert representation. (B) Colour mapping: The
transparency of the colour is adjusted according to the signal value. Dark areas indicate high coverage; light grey areas lower coverage. White areas
indicate zero coverage or absence of data. The red arrows show the coordinate system of the system curve. (C) Comparison of a sample against a
reference: Left: The sample and reference human chromosome 1 in both a Hilbert and a linear representation. Right: The log2 ratio between the
reference and the signal. Blue signals indicate possible tandem duplications as reference< sample, and yellow blocks indicate possible deletions as
reference> sample.
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Any of these panels can be selected to be the focus and
displayed at higher resolution. Although the smaller
panels always represent information at the lowest
zoom level, users have the ability to zoom-in at five
different zoom levels to visualize the sample that is
loaded on the main panel. Indicators highlight the

zoomed areas in a whole chromosome view. Different
views in the application are linked so that the position
of the cursor in one view is reflected in the others.
Finally, one can call the USCS genome browser at any
time to see the relevant locus-specific information for a
certain position.

Figure 3. Comparison of chromosome 1 between strain ICE153 from central Asia and strain ICE97 from southern Italy. (A) An example of a
deletion and a tandem duplication supported by both pair-end and read-depth information. (B) The advantage of the Hilbert representation. Left: A
tandem duplication that is not visible in the linear representation (1 pixel length) but very clear in the Hilbert representation as a bigger block. Right:
The same tandem duplication at zoom level 5 supported both by read-depth and pair-end evidence.
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Dynamic filtering
The Meander application comes with various dynamic
filters. One can for example select variations by type,
keep only the pair-ends with respective mapping distance
within a given interval, hide any coverage below a certain
threshold or hide log2 ratios outside a selected interval. In
addition, a Bezier curve in the linear plot or a straight line
in the Hilbert plot might indicate more than one
overlapping pair-ends that cluster together. One can
filter these pair-ends according to the number of the
pair-ends that form a cluster. For the read-depth informa-
tion, often one cannot distinguish between the actual
signal and the background noise. Therefore, a dynamic
filter can adjust the brightness and the contrast of the
image of the main panel. As a result, regions with lower
intensities are hidden owing to the contrast and more
dense regions with high intensities, often indicating an
SV, remain highlighted. Finally, one of the strong
features of Meander is its ability to highlight the regions
that are supported by double evidence both from read-
depth and pair-end information, providing more confi-
dence about a variation. In cases where a variation is sup-
ported only by a pair-end signal or only by a read-depth
signal, this might not be sufficient.

Input files
Meander accepts simple tab delimited text files, holding
information about the read-depth signals and the pair-
end information. Before launching Meander, read-depth
pileup files, which can vary in size from less than one to
several gigabytes depending on the chromosome length,
cannot be handled directly and should be pre-processed
to compute the relevant coverage information at the five
different zoom levels. Therefore, sufficient disk space must
be available. Each file that holds information about the
average coverage samples per bucket for a Hilbert quarter
at any zoom level consists of 512� 512=262 144 lines.
Such a file has an average size of 15 MB. Three hundred
forty-one of such files are required, as 1 file is necessary for
zoom level one, 4 files for zoom level two, 16 files for zoom
level three, 64 files for zoom level four and 256 files for
zoom level five. This will require on average 15� 341& 5
GB of extra disk space. In addition, raw data files often
contain gaps and do not provide any coverage informa-
tion about every single position of the chromosome.
Therefore, Meander initially creates an intermediate file
containing the coverage signal for every single position
of the chromosome to fill these gaps. Chromosomal pos-
itions of no coverage are assigned to zero as coverage.
This intermediate file can often be double in size
compared with the initial file, depending on how promin-
ent the gaps are. This could substantially increase the disk
requirements if one wants to pre-process a whole genome,
chromosome by chromosome. The pre-processing step is
often time expensive depending on the chromosome length
but needs to be done only once. On average, 20min are
required to pre-process human chromosome 20 on a single
CPU, �1 h for human chromosome 1 or �18 h for the
whole human genome. Pre-processing is done by
running Meander application separately in command
line, and pre-processed files are available for download

on the web site. In terms of memory requirements,
Meander requires �1G of RAM to run, as dynamic data
structures like hash tables, array lists and interval trees
continuously synchronize mouse coordinates with the
Hilbert and linear views.

RESULTS

Case study 1: Arabidopsis thaliana strains

To demonstrate the functionality of Meander and its de-
piction of combined pair-end and read-depth information
as double evidence of possible SVs, we compare two A.
thaliana strains (ICE97 and ICE153) from the 1001
Genomes Project (28). Strain ICE153 was collected from
Central Asia and sequenced to a depth of 21X; strain
ICE97 was collected from Southern Italy and sequenced
to coverage of 19X. We aligned both to the TAIR10
version of the A. thaliana reference genome using BWA
(29) at default settings and converted file formats using
Samtools (30). We then extracted read-depth information
from the resulting pileup files and pairing information
from the BAM files using a custom bash script. The
pair-ends presented here are at least 20 bp in length.

Figure 3A shows an example of a tandem duplication
and deletion supported both by strong read-depth signals
and pair-end information. Pair-ends are visualized as
straight lines in the Hilbert representation and as Bezier
curves in the linear representation.

The tandem duplication in Figure 3B shows the advan-
tage of the Hilbert representation over the linear plot.
Although the specific tandem duplication is not visible in
the linear plot owing to the low resolution (only 1 pixel in
length), it pops up as a bigger highlighted block in the
Hilbert representation. On the right, both read-pair and
pair-end evidence about the specific duplication are pre-
sented at a higher zoom level. This indicates that investi-
gation of read-depth and paired-end data through Hilbert
curves has a distinct added value to only using linear rep-
resentations, especially when concerning small SVs.

Case study 2: Breast cancer in human

Acquisition of mutations plays a key role in the origin and
progression of cancer (31,32). Large-scale sequencing of
whole cancer genomes is revealing an unexpectedly diverse
array of mutational profiles, hinting at considerable
underlying complexity in somatic mutation processes.
High-throughput sequencing generates a huge amount of
data, which is difficult to manage and visualize at genome-
wide level. To understand the chromosomal instability
and genetic changes that are acquired during cell expan-
sion, we compare four single-cell derived subclones of the
human breast cancer cell line HCC38.

The Meander tool can compare multiple samples simul-
taneously, at high resolution. Using Meander, we can
demonstrate the de novo changes occurring in the cell,
by simultaneously comparing the four subclones against
the PD4198b reference genome and detect variations that
are unique in any sample or variations that are common in
all cells. Figure 4 shows a unique tandem duplication and
deletion present in subclone B8FF4C and not present in
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all the other subclones. Evidence about the specific vari-
ation is supported both by pair-end and read-depth
information.

All four subclones were subjected to low coverage
paired-end sequencing where sequencing libraries were
prepared according to standard protocol (33,34), and
both the ends of DNA-fragments were sequenced
on Illumina GAII. Reads were aligned using BWA to
the human reference genome GRCh37. The aberrantly
mapping read-pairs which can map to alternative
locations as a proper-pair were removed. Furthermore,
aberrantly mapping read-pairs were sifted against (a)
mitochondrial sequence, (b) repeats, (c) known BWA
read-pileup regions, and (d) putative germline variants.

DISCUSSION

The field of data visualization covers a wide range of
applications, ranging from interactive exploratory

visualizations that aid in hypothesis generation to ex-
planatory ones, where a clear message has to be
communicated. Meander is located on the explanation
side of this axis, allowing the researcher to visualize raw
data to assess the performance of automated SV calling
algorithms or to identify unexpected patterns. It supports
visualization of both read-pair and pair-end data and
shows genomic signals and signatures at a high resolution.
It is highly interactive and comes with many dynamic
filters to make the exploration of data easier. Every
chromosomal position is linked to the UCSC genome
browser and a dynamic navigation system is implemented
to help the user orient himself. Meander currently
supports cross-sample comparisons of up to four
samples against a common reference and is a very strong
tool for the exploration of de novo variation, as variation
that is supported by both read-pair and pair-end informa-
tion can be automatically highlighted.
Although the representation of genomic data with the

use of Hilbert curves has already been demonstrated

Figure 4. The unstable nature of HCC38. (A) Hierarchy of the single-cell derived subclones and comparison with the PD4198b reference genome. (B)
Comparison between the four subclones against the PD4198b reference genome. Subclone B8FF4C demonstrates a de novo tandem duplication and
flanking deletion not present in the other subclones. (C) Visualization of an inter-chromosomal variation (linked to the q-arm of chromosome 17), a
unique deletion and tandem duplication around position 15 200 000 for chromosome 20 not present in the other subclones.
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(15,22), the application implements a visualization
approach to explore SVs based on read-depth and pair-
end data. Although HilbertVis is developed for ChIP-chip
analysis and DHPC for representing chromatin rearrange-
ments, both of them could potentially be used for the de-
tection and exploration of SV, albeit based on read-depth
only. In contrast, the interactive Meander application
shows variations based both on pair-end and read-depth
information. In addition, Meander goes one step further
by enabling simultaneous comparison on four different
samples against a reference. It also comes with dynamic
filters for read-depth signal, pair-end distance and ratio
intervals. Finally, overlay of predicted variations from
external variant callers, switching between different
views (sample, reference, ratio, read-depth, pair-ends or
combination of those) and visualizations (Hilbert and
linear) are strong features currently not supported by
other applications.
In terms of further development, we plan to extend

Meander’s functionality to include a whole-genome view
and allow multiple zooming, as one could be interested in
looking at several different regions of a genome simultan-
eously. In addition, methodologies will be developed and
improved on to speed up pre-processing of the data and to
internalize SV calling algorithms.
Overall, we believe that Meander can stand as a

powerful tool in the field of comparative genomics, as
well as in aiding in evaluating the quality of predicted
SVs towards personalized medicine and in discovering
new ones that might be causative for genetic disorders.
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