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Abstract
Dendrograms are graphical representations of binary tree structures resulting
from agglomerative hierarchical clustering. In Life Science, a cluster heat map
is a widely accepted visualization technique that utilizes the leaf order of a
dendrogram to reorder the rows and columns of the data table. The derived
linear order is more meaningful than a random order, because it groups similar
items together. However, two consecutive items can be quite dissimilar despite
proximity in the order. In addition, there are 2  possible orderings given n
input elements as the orientation of clusters at each merge can be flipped
without affecting the hierarchical structure. We present two modular leaf
ordering methods to encode both the monotonic order in which clusters are
merged and the nested cluster relationships more faithfully in the resulting
dendrogram structure. We compare dendrogram and cluster heat map
visualizations created using our heuristics to the default heuristic in R and
seriation-based leaf ordering methods. We find that our methods lead to
a dendrogram structure with global patterns that are easier to interpret, more
legible given a limited display space, and more insightful for some cases. The
implementation of methods is available as an R package, named ”dendsort”,
from the CRAN package repository. Further examples, documentations, and
the source code are available at [https://bitbucket.org/biovizleuven/dendsort/].
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Introduction
Agglomerative hierarchical clustering (HC) is one of the classic and 
yet still very popular cluster analysis methods in data exploration1,2. 
Its implementation is widely available and execution of the cluster-
ing requires only a few settings, such as a choice of distance metric 
and linkage algorithm3. The clustering process begins with indi-
vidual input elements as singleton clusters and successively merges 
a pair of most similar clusters until only one cluster remains. The 
dissimilarity, or the distance, between two clusters is defined by 
a distance metric and updated by a linkage algorithm. The output 
of HC is typically represented in a form of a binary tree, called 
a dendrogram. In a dendrogram, the similarity of two clusters is 
encoded in the height of the branch where two clusters merge. Two 
very similar elements are merged in the early stages of clustering, 
thus the height of the branches between these elements is relatively 
small. The dissimilarity between two clusters increases with each 
successive merge, resulting in a binary hierarchical structure with 
a monotonic property4. Therefore, a dendrogram represents both 
cluster-subcluster relationships as well as the order in which the 
clusters were merged5.

There are two unique uses of a dendrogram in exploratory data 
analysis. First, clusters of input elements can be inferred from the 
subtree structures below a certain threshold by “cutting the tre”. It is 
an advantage of hierarchical clustering that this threshold value can 
be adjusted based on domain-specific knowledge to result in clus-
ters of different sizes. Second, a linear order of observations (rows) 
or attributes (columns) of an associated matrix can be derived. This 
linear order of observations is typically used to reorder the columns 
or rows of the data matrix. Then, the matrix is visualized as clus-
ter heat maps1, where dendrograms and heat map visualizations are 
coupled (Figure 1).

The linear order derived from a dendrogram is more meaningful 
than a random order, as it groups similar items together6,7. However, 
two consecutive items in this order are not necessarily similar, since 
these leaves could belong to different subtree structures, or simply 
be quite distant from each other. This is a common misinterpreta-
tion of a dendrogram: one may expect similarity between two input 
elements based on the proximity in the leaf order8,9. In addition, 
there are 2n−1 possible orderings given n input elements, because the 
orientation of clusters at each merge can be flipped without affect-
ing the underlying hierarchical structure, thus rendering a unique 
optimization challenge.

To address the misinterpretation of dendrograms and the optimiza-
tion problem, a number of methods have been proposed to rearrange 
the structure of a dendrogram. Gruvaeus and Wainer10 proposed a 
method (GW) to order leaves such that two singleton clusters at 
the edge of adjacent subtrees are most similar, given the constraint 
of the binary tree structure. Bar-Joseph et al.6 proposed a method, 
called the optimal leaf ordering (OLO), to maximize the sum of 
the similarity of any adjacent elements in the ordering. Similarly, 
Chae and Chen11 proposed a method for ordering by minimizing 
the bilateral symmetric distance between two adjacent clusters. All 
these methods aim to homogenize the linear order in one way or 
another and are evaluated in terms of either a loss function, such as 
the Hamiltonian path length, or a merit function, such as the num-
ber of anti-Robinson events12.

Even though these seriation-based leaf ordering methods exploit the 
binary tree structure to reduce the number of permissible permuta-
tions, these methods have short-comings. First, they homogenize 
and optimize the distance between items in the linear order, and 
this still encourages the common misinterpretation of dendrograms, 

Figure 1. Cluster heat map of the data matrix from the integrated pathway analysis of gastric cancer from the Cancer Genome Atlas 
(TCGA) study.

HC
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reading a dendrogram horizontally. Second, the dendrogram struc-
ture is only a means to reduce the number of permissible permuta-
tions, and the graphical representation of the resulting dendrogram 
obscures the intrinsic properties of the hierarchical clustering 
result, such as the cluster-subcluster relationship and the order in 
which clusters are merged.

In the biological domain, Eisen et al.13 have introduced and estab-
lished a cluster analysis method for high throughput gene expres-
sion data using cluster heat maps. The method includes a leaf 
orderings by weighting genes based on genome coordinates or the 
average expression level. The resulting linear order is more mean-
ingful in terms of biology, but the method requires prior knowledge 
or additional information for the weighting.

In this paper, we present leaf ordering heuristics, named modular 
leaf ordering (MOLO), to address the aforementioned shortcom-
ings by constructing a dendrogram that reflects a) the monotonic 
order in which clusters are merged and b) the nested cluster rela-
tionships. We compare dendrogram and cluster heat map visualiza-
tions created using our heuristics to the default heuristic in R and 
seriation-based leaf ordering methods. The implementation is avail-
able as an R package, named “dendsort”, from the CRAN pack-
age repository. The R script for generating figures in this paper is 
available as a supplementary material. Further examples, documen-
tations, and the source code are available at [https://bitbucket.org/
biovizleuven/dendsort/].

Methods
Hierarchical clustering
Agglomerative hierarchical clustering (HC) starts with individual 
observations as singleton clusters and merges clusters iteratively 
until all clusters belong to one big cluster. In each iteration, the two 
most similar clusters are identified by a distance measure and a link-
age algorithm of choice. The details of the algorithm and the proper-
ties of distance measures and linkage algorithms are described in4,5,14.

The default hierarchical clustering method in R combines three 
types of merges: a merge between two singleton clusters, a merge 

between a singleton cluster and a cluster with more than one mem-
ber, and a merge between clusters with multiple members. The 
heuristics for determining the orientation of merging elements 
essentially determine the structure of the resulting dendrogram.

Using a simple two-dimensional data set as shown in Figure 2A, we 
demonstrate the default heuristics used in the hierarchical cluster-
ing method in R. A dendrogram is constructed as follows: When a 
leaf (singleton cluster) merges with another leaf, the orientation of 
clusters is determined by the order of observations in the input data 
matrix, as seen in branch “a”, “b”, “c” and “f” in Figure 2B. When 
a leaf merges with a cluster with more than one member (subtree), 
the leaf is always placed on the left side of the branch, as shown in 
branch “d” and “g”. When two subtree merges, the subtree with the 
smaller distance in the previous merge is placed on the left, as seen 
in branch “e”, “h”, and “i”. Each branch is labeled alphabetically in 
the order of merges within the clustering process.

In contrast to the default heuristics, our heuristics are characterized 
by 2 key differences: first, a leaf is placed on the right side when it 
merges with a subtree; second, when two subtrees merge, the sub-
tree with the smallest distance among all of preceding merges is 
placed on the left (Figure 2C). The first rule avoids a branch of 
a singleton cluster hanging over the preceding nested clusters and 
allows the tree to grow from left to right in the order of merges. 
The second rule ensures that the tightest cluster is placed leftmost 
within the subtree structure. Consequently, our heuristics result in 
each subtree or sub-cluster structure in a right triangular shape, as 
shown in Figure 2C. This feature increases the contrast between the 
items at the edge of adjacent subtree structures, thus modularizing 
each subtree structure.

The MOLO method takes the result of the default hierarchical clus-
tering method, and reevaluates the orientation of the clusters at each 
branch recursively. The pseudocode of this algorithm is shown in 
Figure 3. In addition to the algorithm based on the smallest dis-
tance, we also implemented a variant in which the average distances 
of all preceding merges are compared, and discussed further in the 
third case study. The data in Figure 2 consist of only 10 observations 

Figure 2. Hierarchical clustering of a simulated two-dimensional data set. (A) A scatterplot of the ten input elements. The number of 
each element also represents the order in the input matrix. (B) A dendrogram drawn using the default heuristics in R. The branches in the 
dendrogram are labeled from “a” to “i” in the order in which clusters are merged. (C) A dendrogram reordered using MOLO with the smallest 
distance. The global structures in a shape of the right triangle are highlighted.

0 1 2 3 4 5

0
1

2
3

4
5

x

y

1
2 3
4

5

6
7
8 9

10

1

2 4

9 10

3

7 8

5 6

0
1

2
3

4

H
ei

gh
t

7 8

5 6

3

9 10

2 4

10
1

2
3

4

H
ei

gh
t

3

1a
b cd

f
g

h

i

a
bc d

f
g

h

i

A B C

Page 3 of 12

F1000Research 2014, 3:177 Last updated: 02 OCT 2014

https://bitbucket.org/biovizleuven/dendsort/
https://bitbucket.org/biovizleuven/dendsort/


and it is merely intended to explain the difference in heuristics. Fol-
lowing case studies demonstrate applications of the MOLO algo-
rithm with larger datasets, and compare visualizations created using 
our heuristics and other existing leaf ordering methods.

Results
Case study 1: Comparison of clustering algorithms
One of the key tasks in applying hierarchical clustering is to choose 
an appropriate distance metric and a linkage algorithm14. A choice 
of distance metric, such as Euclidean distance and correlation-based 
distance, defines a measure of similarity between two elements. 
Clustering algorithms, such as complete, average, and single linkage, 
are variations of the cluster proximity definition5. The choice of 
distance measures and linkage algorithms influences the cluster-
ing results. It is therefore recommended to try different HC settings 
in exploratory data analysis, especially when the underlying data 
structure is unknown.

As Hastie et al.4 point out, dendrogram structures can vary greatly 
depending on the choice of linkage algorithms. In Figure 4, dendro-
grams of different linkage algorithms for the same simulated data 
set are compared. The appearance of the dendrogram structure is 
quite different and it is difficult to compare similarities in the nested 
cluster structure. In contrast, when the MOLO method is applied, we 
find the reordered dendrograms easier to study the nested structure 
and to compare between one another (Figure 5), because the linear 
leaf order in these dendrograms reflect the order in which clusters 
are merged. For instance, the element 32 and 34 form the tightest 
cluster, and they are easy to identify because they are always placed 
leftmost. Also, upon closer examination of the reordered dendro-
gram structures, we find that the reordered dendrograms reflect the 
underlying difference in algorithms more closely. For example, the 
average linkage is an intermediate approach between the single and 

Figure 3. The recursive algorithm for ordering a dendrogram 
structure based on the minimum distance.

Figure 4. Comparison of dendrograms from different linkage algorithms using R’s default ordering heuristics. The element 32 and 34 
are highlighted.
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sort_smallest(d){
    //d is a dendrogram object which consists of 
    //nested dendrogram objects on its left and right,
    //dl  and dr.
    if dl  and dr are singleton clusters
        add the minimum distance to d
        return d
    else if dl is a subtree and dr is a singleton cluster
        sort_smallest(dl )
        set dl  to the left and dr to the right side of d
        add the minimum distance to d
        return d
    else if dl is a singleton cluster and dr is a subtree
        sort_smallest(dr)
        set dr to the left and dl to the right side of d
        add the minimum distance to d
        return d
    else if dl  and dr are subtrees
        sort_smallest(dl )
        sort_smallest(dr)
        if the minimum distance of dl < the minimum 
        distance of dr
            set dl to the left and dr to the right side of d
        else 
            set dr to the left and dl  to the right side of d
        end if
        add the minimum distance to d
        return d
    end if
return d
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complete linkage algorithms to define cluster proximity5. Although 
the MOLO method does not change the clustering result itself, this 
case study demonstrates how it can improve, or at least bring a new 
perspective, to interpret dendrogram structures.

Case study 2: Iris data
The second case study extends the demonstration of seriation-based 
leaf ordering methods by Buchta et al.15 using the Fisher’s Iris data set. 
The Fisher’s Iris data set is available from the R’s dataset package16. 
This Iris data set represents 3 species of iris with 50 observations for 
each species. Each observation contains measurements of 4 attrib-
utes: the sepal length and width, and the petal length and width. 
In this case we performed hierarchical clustering on the distance 
matrix of Euclidean distances, using the complete linkage algo-
rithm. In Figure 6, adjacency matrices are visualized as cluster heat 
maps to compare results of the default hierarchical clustering (HC), 
the Gruvaeus and Wainer’s method (GW)10, the optimal leaf order-
ing (OLO)6, and the MOLO method (MOLO). These matrices are 
diagonally symmetric and rows and columns are reordered based on 
the leaf order of dendrograms. The species for each observation is 
color coded and shown between the dendrogram and the heat map 
visualization. Implementations of the GW and OLO methods are 
available in the seriation R package15.

Despite the fact that each representation shares the same underlying 
hierarchical clustering output, the visual impressions of heat maps 
are different depending on the choice of leaf ordering methods. 
For example, the results of the HC, GW, and OLO methods sug-
gest two predominant clusters, as indicated by dark square blocks 
along the diagonal axis. On the other hand, the result of the MOLO 
method suggests three clusters. The MOLO heuristics place the 
most similar items on the left ends of each subtree structure and 
subsequently merged clusters are placed on its right. As a result, 
the MOLO method reorders the dendrogram structure to reflect the 
modularity of the cluster-subcluster structure. With the information 
of species for each observation, it becomes clear that there are three 
species and a half of versicolor samples are clustered together with 
virginica.

Additionally, we find the cluster edges in the heat map visualization 
of the MOLO method are more prominent than those of other leaf 
ordering methods. One explanation for the enhanced edges is the 
increased contrast between subtree structures, whereas the GW and 
OLO methods aim to reduce the edge contrast between sub-tree 
structures, resulting in more fuzzy boundaries. This effect can be 
seen at the borders between versicolor and virginica species in heat 
map visualizations. The second explanation is that the monotonic 
linear order results in an optical illusion, called Mach band effect, at 
the edge of subtree structures. The Mach band effect explains how 
edges in different shades of gray have exaggerated contrast when 
in contact17. This enhanced edge-detection works to our advan-
tage in identifying clusters, especially because our visual systems 
to decode quantitative or continuous data from different shades of 
colors is limited18.

As also pointed out in previous studies6, the GW and OLO methods 
result in a global structure where highly similar items appear in the 
middle, while marginally related items are on the edge of the sub-
tree structure. This tendency is most apparent in the setosa samples. 
On the other hand, the MOLO method results in a right triangular 
global shape where the similarity of clusters increases from left to 
right, unidirectionally, for each subtree structure. This global prop-
erty enhances the contrast at the borders of clusters and reveals the 
third cluster in the heatmap visualizations.

Case study 3: TCGA
The third case study involves a multivariate table obtained from 
the integrated pathway analysis of gastric cancer from the Cancer 
Genome Atlas (TCGA) study19. In this data set, each column rep-
resents a pathway consisting of a set of genes and each row rep-
resents a cohort of samples based on specific clinical or genetic 
features. For each pair of a pathway and a feature, a continuous 
value of between 1 and -1 is assigned to score positive or nega-
tive association, respectively. The goal of this cluster analysis is to 
explore patterns in the data set and examine clusters to characterize 
the link between the gene expression levels and clinical features 
and to identify subtypes of the cancer among the cohort of samples.

Figure 5. Comparison of dendrograms from different linkage algorithms after applying the MOLO method based on the smallest 
distance. The element 32 and 34 are highlighted.
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These matrices are typically visualized as cluster heat maps (Figure 1). 
By applying hierarchical clustering on the rows and columns inde-
pendently, the rows and columns are reordered to place similar 
items close to each other. In this example, the distance measure 
is based on the Pearson’s Correlation coefficient and the complete 
linkage algorithm is used for hierarchical clustering.

Similarly to previous examples, the application of the MOLO 
method results in a global right triangular shape for each subtree, 
encoding the monotonicity of the hierarchical clustering process 
(Figure 7). However, upon a closer examination, we find that the 
first subtree of the rows does not form a right triangular shape. This 
first cluster is a very loose cluster having relatively long branches, 
except for the very first two rows which have the shortest distance. 
The characteristic of a loose cluster is also reflected in the heat 
map visualization, where there are no strong patterns of clustering, 
except for the first two rows. In order to prioritize tighter clusters 
with a smaller average distance, we implemented a variation of 
the modular leaf ordering method based on the average distance 
of the preceding merges (MOLO_AVG). The effects of leaf order-
ing methods on dendrogram structures for the rows are compared 
in Figure 8. With the MOLO_AVG method, the tight clusters with 
lower average distances are placed leftmost.

The cluster heat map generated with the MOLO_AVG method is 
shown in Figure 9. The choice of either the smallest or average 
distance does not influence the structure within subtrees, however 
the order of the subtree structures changes. Although the differ-
ence may be subtle, we find that the modularity of clusters becomes 
more distinctive with the MOLO_AVG method. The resulting 
visualization also provides new insights into relationships between 
clusters. For instance, the inverse relationship between sets of rows 
and columns becomes more apparent in Figure 9 than the original 
figure (Figure 1).

One way to evaluate the efficiency of a graphical representation is 
to compare the proportion of ink used to represent the data, a con-
cept known as the data-ink ratio20. Since each dendrogram shares 
the same underlying hierarchical clustering output, the total length 
of lines required to draw a dendrogram can be directly compared to 
evaluate the conciseness of dendrogram representations. We calcu-
lated the total length of lines used to draw dendrograms in Figure 9, 
the results of which are shown in Table 1.

The MOLO_AVG method results in the highest reduction in the 
data-ink ratio, while the GW method results in an increase in the 
data-ink ratio. Since the total number of vertical lines in each 

Figure 6. Comparison of leaf ordering methods in cluster heat maps. The default hierarchical clustering (HC), the Gruvaeus and Wainer’s 
method (GW), the optimal leaf ordering (OLO), and the MOLO method are applied to the Fisher’s Iris data set.
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Figure 7. Cluster heat map of the data matrix after applying the MOLO method based on the smallest distance.

Figure 8. Comparison of dendrogram structures resulting from different leaf ordering methods. The rows from the example data sets 
are shown.
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Figure 9. Cluster heat map of the data matrix after applying the MOLO method based on the average distance. The rows and columns 
with an inverse relationship are highlighted in the dendrograms.

MOLO_average

dendrogram is the same, the difference in the total length is due to 
the horizontal lines. A factor contributing to the reduction of horizon-
tal lines is the heuristic of placing the singleton cluster on the right 
side of the branch. This heuristic avoids the placement of a singleton 
cluster on the left side, spreading over the nested tree structure.

As the data size increases, the number of rows or columns in the 
data matrix increases while the display space for the figure may 
be limited. As a result, a dendrogram representation may become 
denser with more leaves, making the details of hierarchical struc-
ture harder to read. Figure 10 shows the same dendrograms as in 
Figure 8, but in a more limited display space. Because the MOLO 
methods results in a global pattern of right triangular shapes, it sup-
ports the viewer to identify tight and loose clusters even when the 
vertical lines of branches are so dense that they are in contact with 
adjacent branches. Similarly, because of this right triangular shape, 
each subtree structure is still distinguishable. Therefore, the MOLO 
methods aid the readability of dendrogram structures, even when 
the display size is limited.

Table 1. Comparison of the total line lengths required to draw 
the dendrogram structures shown in the Figure 8.

Method HC GW OLO MOLO MOLO_AVG

Total length 559.79 598.93 551.98 492.88 437.48

Ratio to HC 1 1.07 0.99 0.88 0.78

In summary, this case study demonstrates how the MOLO methods 
support tasks in exploratory data analysis and improve readability 
of the dendrogram representations by reducing visual clutter. The 
dendrogram structure after the MOLO methods results in right 
triangular shapes for each subtree structure, and the order of leaves 
in each subtree reflects the order in which clusters are merged. In 
common with the case study of the Iris data set, the MOLO methods 
aid cluster identification in cluster heat maps.

Discussion
In this paper, we introduce two modular leaf ordering methods and 
demonstrate how leaf ordering of dendrograms can influence the 
interpretation of cluster heat map visualizations. While seriation-
based leaf ordering methods focus on homogenizing the linear 
order of leaves, our heuristics focus on improving the graphical rep-
resentation of dendrograms to reflect the intrinsic properties of the 
hierarchical clustering process, such as the monotonic increase of 
distances in successive merges. As a result, each subtree structure 
has a global right triangular shape. This modular property is also 
reflected in the linear order of leaves, thus influencing the visual 
impression of clusters in heat map visualizations.

Although the leaf ordering methods affect the dendrogram rep-
resentation and the linear order of leaves, it does not change the 
underlying hierarchical structure. In other words, the quality of 
the clustering results ultimately depends on the quality of the input 
data and the choice of appropriate distance metric and linkage 
algorithm. Given no prior knowledge of underlying patterns in data 
sets, it is recommended to try different normalization techniques 
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in preprocessing and different distance measures and linkage algo-
rithms to allow different aspects of the data to be explored14.

Conclusions
Through case studies, we demonstrate the effects of our leaf order-
ing methods on the interpretation of the clustering result, as well 
as the reduction in visual clutter as measured by the data-ink ratio. 
With cluster heat map techniques being very popular in life sci-
ences, we advocate our methods to be considered both for explora-
tory data analysis and for publication of figures.
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