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ABSTRACT
A large number of clinical concepts are categorized under standardized formats that
ease the manipulation, understanding, analysis, and exchange of information. One
of the most extended codifications is the International Classification of Diseases
(ICD) used for characterizing diagnoses and clinical procedures. With formatted
ICD concepts, a patient profile can be described through a set of standardized
and sorted attributes according to the relevance or chronology of events.
This structured data is fundamental to quantify the similarity between patients
and detect relevant clinical characteristics. Data visualization tools allow the
representation and comprehension of data patterns, usually of a high dimensional
nature, where only a partial picture can be projected. In this paper, we provide a
visual analytics approach for the identification of homogeneous patient cohorts by
combining custom distance metrics with a flexible dimensionality reduction
technique. First we define a new metric to measure the similarity between diagnosis
profiles through the concordance and relevance of events. Second we describe a
variation of the Simplified Topological Abstraction of Data (STAD) dimensionality
reduction technique to enhance the projection of signals preserving the global
structure of data. The MIMIC-III clinical database is used for implementing the
analysis into an interactive dashboard, providing a highly expressive environment for
the exploration and comparison of patients groups with at least one identical
diagnostic ICD code. The combination of the distance metric and STAD not only
allows the identification of patterns but also provides a new layer of information to
establish additional relationships between patient cohorts. The method and tool
presented here add a valuable new approach for exploring heterogeneous patient
populations. In addition, the distance metric described can be applied in other
domains that employ ordered lists of categorical data.

Subjects Data Science, Visual Analytics
Keywords Visual analytics, ICD diagnostic codes, Dimensionality reduction

INTRODUCTION
Patient profiling and selection are a crucial step in the setup of clinical trials. The process
involves analytical methods to handle the increasing amount of healthcare data but is still
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extremely labor-intensive (Sahoo et al., 2014). Nevertheless, the input from an expert in
this selection is important.

To support the expert in the selection of suitable patients, visual analytics solutions
can enable the exploration of a patient population, make recruitment consistent across
studies, enhance selection accuracy, increase the number of selected participants, and
significantly reduce the overall cost of the selection process (Fink et al., 2003; Damen et al.,
2013). Visual analytics relies on interactive and integrated visualizations for exploratory
data analysis in order to identify unexpected trends, outliers, or patterns. It can indicate
relevant hypotheses that can be complemented with additional algorithms, and help define
parameter spaces for these algorithms (Franken, 2009). A major challenge in creating
visual solutions is to find effective tools which allow the projection of all data dimensions.
One popular solution is to visualize the relationship between elements rather than raw data
through similarity metrics which quantify the closeness between data objects (Liu et al.,
2016). Similarity metrics are a fundamental part for most of the case-based reasoning
algorithms (Kolodner, 2014) such as the detection of consistent cohorts of patients within
a patient population. One of the remaining open challenges in the analysis of patient
similarity is to establish relevant and practical ways based on clinical concepts (Jia et al.,
2019).

Many types of information about the patient profile such as diagnosis, procedures, and
prescriptions are available under standardized categories contained in taxonomies or
dictionaries, e.g., the International Classification of Diseases (ICD), Medical Dictionary for
Regulatory Activities (MedDRA) and the Anatomical Therapeutic Chemical (ATC)
Classification System. Each patient is for example linked to an ordered list of diagnoses,
which are semantic concepts that are (in the case of MIMIC (Johnson et al., 2016)) ordered
from most to least important (as per the MIMIC-III documentation “ICD diagnoses are
ordered by priority—and the order does have an impact on the reimbursement for
treatment”). These standardized formats provide a non-numerical data structure
facilitating both understanding and management of the data. Several methods have
been proposed to define similarity between lists of clinical concepts based on presence of
absence of specific terms (Gottlieb et al., 2013; Zhang et al., 2014; Brown, 2016; Girardi
et al., 2016; Rivault, Le Meur & Dameron, 2017; Jia et al., 2019). However, the diagnostic
profile of a patient is not merely an independent list of semantic concepts but also
includes an intrinsic order indicated by the position of the terms in the list reflecting the
relevance vis-a-vis the actual patient status. To the best of our knowledge, no previous
work has combined the categorical and ordinal nature of clinical events into a single
distance function. This dualism can contribute to improving the detection of cohorts
through diagnostic and procedural data. This can significantly impact clinical trials
when diagnoses or procedures are part of the recruitment criteria (Boland et al., 2012).

In this paper, a novel approach for exploring clinical patient data is introduced. In
particular, we focus on patient profiles represented by a set of diagnosis ICD codes sorted
by relevance. The distance metric considers the sorted concepts as input, and the resulting
pairwise values are used to create a graph where similar patients are connected.
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The remaining part of this paper is organized as follows. In the section “Background”,
we give an overview of related work in categorical events and graphical projections of
patient similarity. The section “Materials and Methods” describes the proposed distance
metric and modifications applied on the base algorithms STAD for visualizing patient
population. In “Results”, we demonstrate the effectiveness of the approach in a real-world
dataset. The section “Discussion” compares other methods and alternative metrics for
similar data. Finally, the section “Conclusion” presents conclusions and possible directions
for future work.

BACKGROUND
The exploration and analysis of patients through similarity measures has been presented
in different areas of bioinformatics and biomedicine, and also data mining and
information visualization. In this section, we review the related literature on these areas
below, and we focus on the notion of similarity measures for categorical events and
graphical representation of patient similarity.

Patient similarity and distance measures for categorical events
Different distance metrics exist for unordered lists of categorical data, including the
overlap coefficient (Vijaymeena & Kavitha, 2016), the Jaccard index (Real & Vargas, 1996),
and the simple matching coefficient (Šulc & Řezanková, 2014). These methods compute
the number of matched attributes between two lists using different criteria. Although
they treat each entry in the list as independent of the others, they have been used
successfully to measure patient similarity to support clinical decision making and have
demonstrated their effectiveness in exploratory and predictive analytics (Zhang et al., 2014;
Lee, Maslove & Dubin, 2015). Similarly, different ways of computing distances between
ordered lists are available (Van Dongen & Enright, 2012). The Spearman’s rank coefficient
(Corder & Foreman, 2014) is useful for both numerical and categorical data and has
been used in clinical studies (Mukaka, 2012). However, correlation between ordered lists
cannot be calculated when the lists are of different lengths (Pereira, Waxman & Eyre-
Walker, 2009).

In the context of medical diagnoses, the International Classification of Diseases (ICD)
codes have been widely used for describing patient similarity. However, these typically
consider the hierarchical structure of the ICD codes. Gottlieb et al. (2013), for example,
proposed a method combining the Jaccard score of two lists with the nearest common
ancestor in the ICD hierarchy. The similarity measure for the ICD ontology was previously
presented in Popescu & Khalilia (2011). Each term is assigned to a weight based on its
importance within the hierarchy, which was defined as 1 − 1/n where n corresponded to its
level in the hierarchy.

In our work, however, we will not leverage the hierarchical structure of the ICD codes,
but employ the ICD grouping as described by Healthcare Cost & Utilization Project
(2019). Our approach takes the position of the term in the list of diagnoses into account,
which is a proxy to their relevance for the patient status. The metric assigns a higher weight
to terms located earlier in the list.
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Alternative approaches such as those by Le & Ho (2005) and Ahmad & Dey (2007)
consider two elements similar if they appear together with a high number of common
attributes. They must share the same relationships with other elements in the sample.
The latent concept of these metrics is to find groups of co-occurrence such as the
identification of disease comorbidities (Moni, Xu & Lio, 2014; Ronzano, Gutiérrez-
Sacristán & Furlong, 2019) although these studies aim to find heterogeneous types of
diseases rather than different profiles of patients. The main drawback of metrics based on
co-occurrence is the assumption of an intrinsic dependency between attributes without
considering their relevance. The work presented by Ienco, Pensa & Meo (2012) and Jia,
Cheung & Liu (2015) use the notion of contexts to evaluate pairs of categories. A context
is an additional dimension used to determine the similarity between pairs. If the
context is another categorical dimension, the similarity between the two categories is
determined by the resulting co-occurrence table’s correlation.

Graphical projections of patient similarity
Visually representing pairwise distance matrices remains a challenge. Most often,
dimensionality reduction techniques are used to bring the number of dimensions down to
two so that the data can be represented in a scatterplot (Nguyen et al., 2014; Girardi
et al., 2016; Urpa & Anders, 2019). Such scatterplots can not only indicate clusters and
outliers, but are also very useful for assessing sample quality. In the case of patient data,
each point in such plot represents a patient, and relative positions between them in the
2D plane correspond to the distance between them in the original higher dimensional
space. Multidimensional scaling (MDS) is arguably one of the most commonly used
dimensionality reduction methods (Mukherjee, Sinha & Chattopadhyay, 2018). It arranges
points on two or three dimensions by minimizing the discrepancy between the original
distance space and the distance in the two-dimensional space. Since its first use, many
variations of classical MDS methods have been presented, proposing modified versions of
the minimization function but conserving the initial aim (Saeed et al., 2018). Besides
MDS, recent methods have been proposed to highlight the local structure of the different
patterns in high-dimensional data. For example, t-distributed stochastic neighbor
embedding (t-SNE) (Maaten & Hinton, 2008) and uniform manifold approximation
(UMAP) (McInnes, Healy & Melville, 2018) have been used in many publications on
heterogeneous patient data (Abdelmoula et al., 2016; Simoni et al., 2018; Becht et al., 2019).
Unlike MDS, t-SNE projects the conditional probability instead of the distances between
points by centering a normalized Gaussian distribution for each point based on a
predefined number of nearest neighbors. This approach generates robustness in the
projection, which allows the preservation of local structure in the data. In a similar fashion,
UMAP aims to detect the local clusters but at the same time generates a better intuition of
the global structure of data.

In addition to scatterplot representations, alternative visual solutions are also possible,
for example heatmaps (Baker & Porollo, 2018), treemaps (Zillner et al., 2008), and
networks. The latter are often built using a combination of dimensionality reduction
and topological methods (Li et al., 2015; Nielson et al., 2015; Dagliati et al., 2019).
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This approach has for example been used with success to visually validate the automated
patient classification in analytical pipelines (Pai & Bader, 2018; Pai et al., 2019). In general,
the created network encodes the distance between two datapoints in high-dimensional
space into an edge between them and the full dataset can therefore be represented as a
fully connected graph. The STAD method (Alcaide & Aerts, 2020) reduces the number of
edges allowing a more scalable visualization of distances. The original distance in high-
dimensional space between two datapoints is correspondent to the path-length in the
resulting graph between these datapoints. The main advantage of networks to display high-
dimensional data is that users not only can perceive patterns by the location of points but
also by the connection of elements, thereby increasing trust in the data signals.

MATERIALS AND METHODS
The International Classification of Diseases (ICD) is a diagnosis and procedure coding
system used by hospitals to bill for care provided. They are further used by health
researchers in the study of electronic medical records (EMR) due to the ease of eliciting
clinical information regarding patient status. Although these administrative databases
were not designed for research purposes, their efficiency compared to the manual review of
records and demonstrated reliability of information extracted have democratized the
analysis of health data in this way (Humphries et al., 2000). Even though ICD codification
is hierarchically organized, some concepts in the database may be under-reported
(Campbell et al., 2011). To make analysis feasible, the ICD codes are in practice often
grouped in higher categories to reduce noise and facilitate the comparison and analysis
with automatic systems (Choi et al., 2016; Miotto et al., 2016; Baumel et al., 2018). In our
approach, we adopt the ICD generalization introduced by the Clinical Classification
Software (CSS) which groups diseases and procedures into clinically meaningful sections
(Healthcare Cost & Utilization Project, 2019). Here we introduce a method to compare
unequal sets of ordered lists of categories and explore the different cohorts of patients
through visual representations of data. This approach employs a custom distance metric
presented in section “Diagnosis similarity and distances” within the visual analytics
method as presented in section “Spanning Trees as Abstraction of Data”.

Diagnosis similarity and distances
In the MIMIC dataset which was used for this work (Johnson et al., 2016), each patient’s
diagnosis is a list of ICD codes, as exemplified in Table 1. The average number of concepts
per profile in the MIMIC III dataset is 13 with a standard deviation of five. Diagnoses
are sorted by relevance for the patient status. This order determines the reimbursement for
treatment, and, from an analysis perspective, can help us to distinguish similar medical
profiles even with different initial causes. The similarity metric presented in this work takes
this duality into account and provides support for comparing profiles with an unequal
length of elements.

The similarity between two patients (diagnosis profiles) A and B is based on which
diagnoses (i.e., ICD9 codes) are present in both, as well as the position of these elements in
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the list. Consider a match M between two concepts cA and cB, which contributes to the
similarity according to the following formula:

MCðA;BÞ ¼ ln 1þ 1
maxðpositionðcAÞ; positionðcBÞÞ

� �

The position mentioned in the formula corresponds to the positional index in the
list. As an example, the individual contribution of the concept “Sepsis” for patients
A and B in Table 1 is MSepsis ¼ ln 1þ 1

maxð2;4ÞÞ
� �

¼ ln 1:25. The total similarity
between patients is the sum of individual contributions from the matched concepts

SðX;YÞ ¼ Pi¼1
n MðX T

YÞ. Applying this formula to the example in Table 1 gives: S

(Patient A, Patient B) =MSepsis +MUrinary tract infection +MHypertension = ln 1.25 + ln 1.20 + ln
1.17 ≃ 0.56.

To perform the patient analysis in STAD (Section “Simplified Topological Abstraction
of Data”), the similarity measure S needs to be converted into a distance measure
D = 1 − Snormalized where Snormalized = S/max(S).

Distance measures in categorical variables are built based on a binary statement of zero
or one. Unlike other data types, categorical data generate a bimodal distribution, which can
be considered as a normal when the element contains multiple dimensions (Schork &
Zapala, 2012). The similarity in diagnosis metric not only depends on the matching of
elements but also on their positions on the list. These two conditions tend to generate
left-skewed distance distributions, as shown in Fig. 1A. In other words, most patients are
very different from other patients.

Simplified topological abstraction of data
Simplified Topological Abstraction of Data (STAD) (Alcaide & Aerts, 2020) is a
dimensionality reduction method which projects the structure of a distance matrix DX

into a graph U. This method converts datapoints in multi-dimensional space into an
unweighted graph in which nearby points in input space are mapped to neighboring
vertices in graph space. This is achieved by maximizing the Pearson correlation between

Table 1 Diagnosis profiles of two patients with sepsis in the MIMIC-III database. Diagnosis profiles of two patients with sepsis in the MIMIC-III
database (HADM_ID: 115057 and 117154). The list of diagnoses presented in this table are simplified for illustrative purposes. The patients share
many diagnoses, although the order is different. The position of a concept corresponds to its importance in describing the patient status, i.e., the first
position is the most important pathology and the last the least relevant. Concepts in bold highlight the matches between the two patients.

Patient A (115057) Patient B (117154)

ICD section Label (ICD9) ICD section Label (ICD9)

1 996-999. Infection and inflammatory reaction due to other
vascular device, implant, and graft (99662)

1 430-438. Unspecified intracranial hemorrhage (4329)

2 990-995. Sepsis (99591) 2 430-438. Cerebral artery occlusion, unspecified with cerebral
infarction (43491)

3 590-599. Urinary tract infection, site not specified (5990) 3 996-999. Iatrogenic cerebrovascular infarction or hemorrhage (99702)

4 401-405. Unspecified essential hypertension (4019) 4 990-995. Sepsis (99591)

5 590-599. Urinary tract infection, site not specified (5990)

6 401-405. Unspecified essential hypertension (4019)
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the original distance matrix and a distance matrix based on the shortest paths between
any two nodes in the graph (which is the objective function to be optimized). STAD
projections of multi-dimensional data allow the extraction of complex patterns. The input
for a STAD transformation consists of a distance matrix of the original data, which in this
case is based on the metric as defined in the previous section.

As mentioned above, high dissimilarity between datapoints (i.e., patients) results in a
left-skewed distance distribution. Unfortunately, this skew poses a problem for STAD
analysis. As mentioned above, the STADmethod visualizes the distances between elements
by means of the path length between nodes. Hence, to represent a big distance between
two elements, STAD needs to use a set of intermediate connections that help to describe a
long path. In case no intermediate nodes can be found, the algorithm forces a direct
connection between the two nodes. As a result, in a left-skewed distribution, STAD
tends to generate networks with an excessively high number of links, even when high
correlation can be achieved as shown in Figs. 1B and 1D. This means that the principle that
nodes that are closely linked are also close in the original space (i.e., are similar) does not
hold anymore (Koffka, 2013).

Therefore, we propose a modification of the STAD algorithm, named STAD-R
(where the R stands for “Ratio”), which avoids the problem on datasets of dissimilar
items through the use of a modified objective function. To reduce the number of links
between dissimilar datapoints we alter the STAD method to incorporate the ratio

R ¼
P

1�dnetwork edgeP
1þdnetwork edge

, in which the sum of dnetwork edge refers to the sum of distances of edges

included in the network (see Fig. 2). Note that edges represent the distance between two
elements of the dataset and constitute a cell in the pairwise distance matrix.

Figure 1 Distance distributions of a population of patients with sepsis, STAD, and STAD-R projections. The dataset is composed of a selection
of 1,271 patients from MIMIC-III diagnosed with sepsis (ICD-9: 99591). Predefined conditions cause more homogeneous populations that mitigate
the skewness of the diagnosis similarity distribution. (A) Distribution of diagnosis distance. (B) Correlation between original distance matrix and
distance matrix based on STAD graph, given different numbers of edges. (C) Idem as (B) using STAD-R. (D) STAD network. (E) STAD-R network.

Full-size DOI: 10.7717/peerj-cs.430/fig-1
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This ratio R is added to the objective function of the algorithm, which maximizes
the correlation ρ between the distance matrices DX (of the input dataset) and DU (based
on shortest path distances in the graph). When including the ratio R, the objective
function in STAD-R is not only a maximization problem based on the Pearson correlation
but also a maximization of ratio R. Table 1 shows the difference between STAD and
STAD-R.

The ratio R is the sum of those distances of datapoints in DX that are directly connected
in network U. Figure 2 illustrates the creation of a STAD-R network during different
iterations.

The result of STAD-R over STAD is presented in Fig. 1E. The network has considerably
fewer links (Fig. 1C), and patterns in the data are much more apparent.

The STAD-R algorithm generates networks with considerably lower number of links
compared to the correlation-based version. The ratio R restricts the inclusion of
dissimilarities and therefore, the number of edges in the network. This new constraint
also alters the number of edges in networks generated from other distributions types,

Figure 2 Creation of the STAD-R network for different iterations. (A) Distance matrix DX : Pairwise
distances between all elements in a point cloud are calculated using a defined distance metric.
(B) Distance list: Transformation of the matrix into a edges list. Edges are sorted by their distance.
Smaller distances are first candidates to become part of the network U. (C) The Minimum spanning tree
connects all nodes with minimum distance. It guarantees that a path exists between all nodes and
becomes the initial iteration in the evaluation of the optimal STAD network (D). The addition of edges
over the MST may improve the correlation between the two distance matrices. Edges are added in
sequential order following the list in B. (E) The optimal network is found at the iteration with the
maximum combination of correlation between DX and DU and the ratio R.

Full-size DOI: 10.7717/peerj-cs.430/fig-2
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e.g., right-skewed or normal. Nevertheless, the general “shape” of the resulting network
remains the same. An example is presented in Fig. 3A, showing a right-skewed
distance distribution, leading to networks with different numbers of edges for STAD
and STAD-R, respectively. However, the structure is still preserved in both networks
(Figs. 3D and 3E).

RESULTS
We applied this approach to the MIMIC-III database (Johnson et al., 2016), which is a
publicly available dataset developed by the MIT Lab for Computational Physiology,
containing anonymized health data from intensive care unit admissions between 2008
and 2014. The MIMIC-III dataset includes the diagnosis profiles of 58,925 patients.
Their diagnoses are described using the ICD-9 codification and sorted according to their
relevance to the patient. To reduce the number of distinct terms in the list of diagnoses,
ICD codes were first grouped as described in the ICD guidelines Healthcare Cost &
Utilization Project (2019). The proof-of-principle interface as well as the underlying code
can be found on http://vda-lab.be/mimic.html.

The interface is composed of two main parts: an overview node-link network
visualization including all patients (Fig. 4A), and a more detailed view of selected profile
groups (Fig. 4B). Networks for each ICD code are precomputed: for each ICD-9 code
the relevant patient subpopulations were extracted from the data, diagnosis distances
and the resulting graph were computed using STAD-R. When the user selects an ICD-9
code from the interface (in this case code 2910; alcohol withdrawal delirium), the
corresponding precomputed network is displayed.

The output of Louvain community detection (De Meo et al., 2011) is added as post-hoc
annotation to facilitate the selection and exploration of the most evident patterns.

Figure 3 Distance distributions of traffic activity, STAD, and STAD-R projections. The dataset contains the traffic activity in the city of Bar-
celona from October 2017 until November 2018. The dataset was presented and analyzed in Alcaide & Aerts (2020) (A) Distribution of diagnosis
distance. (B) Correlation between original distance matrix and distance matrix based on STAD graph, given different numbers of edges. (C) Idem as
(B) using STAD-R. (D) STAD network. (E) STAD-R network. Full-size DOI: 10.7717/peerj-cs.430/fig-3
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Figure 4 The interface to explore the diagnosis profiles in the MIMIC-III database. (A) Network
visualization of those patients who have alcohol withdrawal delirium as one of their diagnoses. The
network is visualized using a force-directed layout. Node colors are assigned automatically following
Louvain community detection. (B) Bar-charts to compare the diagnosis profiles of selected groups in the
network. Color corresponds to ICD category. In this example Group A contains patients with alcohol
withdrawal delirium as the primary diagnosis; in contrast, Group B lists closed fractures as the most
relevant diagnosis, and alcohol withdrawal delirium is only in the 2nd to 8th position.

Full-size DOI: 10.7717/peerj-cs.430/fig-4
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The Louvain algorithm defines clusters by measuring the density of links inside the group
compared to the links between them, which is close to the user interpretation of networks.
However, the interpretation of a STAD-R network is not limited to discrete clusters.
It aims to represent all relationships between points, including other types of patterns, such
as trends or loops. The user can subsequently select either a cluster in this visualisation or
individual patients, which will then trigger the display of a barchart which gives more
information for that particular cluster (Fig. 4B). This stacked barchart shows how different
ICD codes are spread across the different positions in the list of diagnoses: how many
patients have code 2910 at the first position in the diagnosis list, how many at the second
position, etc.; the same goes for the other ICD codes. Total bar lengths decrease as the
position in the list decreases due to the fact that different patients have different lengths of
diagnosis lists.

DISCUSSION
The definition of a custom similarity metric together with a flexible dimensionality
reduction technique constitute the key elements of our approach. In this section, we
evaluate the benefits of STAD to detect patterns in diagnostic data compared to other
popular methods and further discuss the application of the presented distance metric in a
different but similar context.

Comparing STAD to other dimensionality reduction methods
The projection of distances in STAD-R aims to enhance the representation of similarities
using networks. Similar groups of patients tend to be inter-connected and perceived as
a homogeneous cohort. The outputs of three popular algorithms (MDS, t-SNE, and
UMAP) are compared with STAD-R in Fig. 5. The population used in this example is
the collection of MIMIC-III patients with alcohol withdrawal delirium (ICD-9 291.0),
which was also used for Fig. 4. The MDS projection endeavors to approximate all distances
in data within a single 2D plane. Dimensionality methods such as t-SNE and UMAP
favor the detection of local structures over the global, although UMAP also retains part of
the general relations. Conversely, the abstract graph produced by STAD-R must still
be embedded to be visualized, and the selection of the layout may produce slightly
different results. Unlike scatterplots, node-link representations provide a more flexible
platform for exploring data, especially when node positions can be readjusted according to
the analyst and data needs (Henry, Fekete & McGuffin, 2007).

In the four plots of Fig. 5, the same points were highlighted to ease the comparison
between them. These groups correspond to three communities identified by the Louvain
method in the interface. For instance, community 1 and 3 correspond to the patients
analyzed in section “Results”. Community 1 were patients diagnosed with alcohol
withdrawal delirium as the primary diagnosis (Group A in Fig. 4); community 3 are
patients with fractures of bones as the primary diagnosis (Group B in Fig. 4); community 2
are patients with intracranial injuries such as concussions. Despite the simple comparison
presented, further analysis between these groups confirmed qualitative differences between
profiles and a closer similarity between communities 2 and 3 than 1. The initial causes
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of communities 2 and 3 are associated with injuries while the primary diagnosis of patients
in community 1 is the delirium itself.

In Fig. 5, we can see that communities that are defined in the network (Fig. 5A) are
relatively well preserved in t-SNE (Fig. 5C) but less so in MDS (Fig. 5B). However,
t-SNE does not take the global structure into account which is apparent from the fact
that communities 2 and 3 are very far apart in t-SNE but actually are quite similar
(STAD-R and MDS). UMAP (Fig. 5D) improves on the t-SNE output and results in a view
similar to MDS.

Figure 5 Comparison of STAD-R, MDS, t-SNE and UMAP using the population of patients with
patients with alcohol withdrawal delirium (ICD-9 291.0). (A) ForceAtlas2 embedding of STAD-R
graph; (B–D) MDS, t-SNE and UMAP projections of the same distance matrix used to compute the
STAD-R graph, respectively. The three communities were determined by the Louvain algorithm.
Community 1 are patients diagnosed with alcohol withdrawal delirium in the first positions of the list.
Community 2 were patients with intracranial injuries as concussions. Community 3 are patients with
fractures of bones as the primary diagnosis. Full-size DOI: 10.7717/peerj-cs.430/fig-5
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Although the interpretation of these visualizations is difficult to assess, quality metrics
may help quantify the previous intuitions. Table 2 presents the quantitative measures for
global distance and local distance preservation of projections in Fig. 5. Global distance
preservation was measured using the Spearman rank correlation (ρSp). It compares the
distances for every pair of points between the original data space and the two-dimensional
projection (Zar, 2005). Local distance preservations were measured by the proportion
of neighbors identified in the projection. This metric quantifies how many of the neighbors
in the original space are neighbors in the projection (Espadoto et al., 2019). We evaluated
this metric using a neighborhood of the first fourteen neighbors, since fourteen is the
average cluster size in the MIMIC-III dataset found using Louvain community detection
(14 − nn).

The richness of the node-link diagram representation of STAD-R cannot be
captured using node position in the 2D plane alone. Therefore, STAD-R is analyzed
from two perspectives. First, as the abstract graph generated by STAD-R (STAD-R graph)
and, second, the two-dimensional projection after graph drawing (STAD-R layout).
The abstract graph only considers the connections between nodes to determine the
distances between them, whereas the graph drawing results only consider the node
placement in the 2D plane.

Based on the values from Table 3, STAD-R obtained equivalent results to other
dimensionality reduction methods in the preservation of global and local structures.
Although MDS captured global relationships most effectively, STAD-R layout obtained
a correlation value equal to UMAP. Local community structure was most effectively
captured in the t-SNE layout (at the expense of global structure). Whilst STAD-R’s graph is
more effective, this local structure is lost on embedding. In comparison with other
projection methods, we note that node-link diagrams provide tangible information

Table 2 Objective function in STAD and STAD-R. The correlation ρ is computed between the original
distance matrix DX and the distance matrix derived from the shortest path graph in DU. The ratio R is
calculated from the network at each iteration considering the edges included in the network. Note that
distance dnetwork edge are normalized values between zero and one.

STAD STAD-R

max ρ(DX, DU) max rðDX ;DUÞR ¼ max r
P

1� dnetwork edges
P

1þ dnetwork edges

Table 3 Distance preservation measures of projections in Fig. 5. The table describes the Spearman’s
rank correlation (ρSp) and the proportion of the first fourteen nearest neighbors preserved (14−nn). The
selection of 14 neighbors corresponds to the average cluster size in the MIMIC-III dataset using Louvain
community detection. Column “STAD-R graph” represents the abstract graph and column “STAD-R
layout” represents the node placement generated by a ForceAtlas2 layout (Jacomy et al., 2014) which is
the layout implemented in the interface. These results were obtained from a single execution, and sto-
chastic methods such as t-SNE and ForceAtlas2 may provide different values between executions.

Global/local focus Measure MDS t-SNE UMAP STAD-R graph STAD-R layout

Global ρSp 0.54 0.41 0.47 0.52 0.47

Local 14-nn 0.34 0.60 0.53 0.62 0.52
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through links, which enhance the interpretation of relationships and allow thorough
exploration through interactions, such as dragging nodes to other positions.

Similarity measures for ICD procedures
The diagnosis similarity described in section “Diagnosis similarity and distances” is
designed for assessing distance between diagnosis profiles, but the principles presented
here can be generalized to other terminologies. For example, the procedures which patients
receive during a hospital stay are also recorded and also follow an ICD codification: they
also contain a list of categories similar to diagnosis. Unlike ICD diagnoses lists, which
encodes priority, the order of procedure code lists indicate the sequence in which
encode procedures were performed. Thus the weight distribution in the similarity that
was used for the diagnosis metric must be adapted to the nature of the procedure data.
We can alter the formula to include the relative distance between positions of matched
elements instead of the top position in the diagnosis case. Formally, the similarity between
two procedure concepts can be then described as follows:

MCðA;BÞ ¼ ln 1þ 1
positionðCAÞ � positionðCBÞj j þ 1

� �

As with diagnosis similarity, the metric is estimated as the sum of individual
contributions of matched concepts, SðX;YÞ ¼ Pn

i¼1MðX \ YÞ.

Figure 6 The population of patients who received a partial hip replacement (ICD 9: 81.52). The
network was computed using STAD-R, and distances were estimated using an adapted version of
diagnosis similarity for procedures. Color is based on Louvain community detection.

Full-size DOI: 10.7717/peerj-cs.430/fig-6
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Figure 6 shows a STAD network generated using this adapted similarity for procedures.
This example illustrates the population of patients with partial hip replacement (ICD 9:
81.52) in the MIMIC-III population. We can identify three clusters which describe three
types of patients: group A are patients with the largest list of activities and are often
characterized by venous catheterization and mechanical ventilation; patients in group B
are mainly patients with a single procedure of partial hip replacement; patients in group C
are characterized by the removal of an implanted device and a blood transfusion (data not
shown).

CONCLUSIONS
In this paper, we introduced a custom distance metric for lists of diagnoses and procedures,
as well as an extension to STAD to improve its effectiveness for dissimilar datapoints.
The diagnosis similarity measure can be applied to any ordered list of categories in a
manner that is not possible with the measures available in the literature so far. The metric
is designed to identify differences between patients through standardized concepts
(diagnosis and procedures) where the weights of matching concepts are adapted to
highlight the most relevant terms. As mentioned in Boriah, Chandola & Kumar (2008),
selecting a similarity measure must be based on an understanding of how it handles
different data characteristics. The projection of data using STAD-R allows both for the
detection of local structures and the representation of the global data structure. While no
dimensionality reduction output from a high-dimensional dataset can completely project
all relationships in the data, the connection of nodes in the graph allows a granular
selection and exploration of cohorts. Furthermore, the embedding of the network into an
interactive dashboard provides a level of convenience that supports interpretation of the
analysis results of the network.

Moreover, as discussed previously, STAD-R can reveal equivalent data signals at
multiple levels to other dimensionality reduction methods. Quantitative and qualitative
(user) evaluation of the method can be further extended with other datasets to assess
both the information captured by the graph and the benefits of node-links diagrams
to represent the similarity between datapoints. In future work, we plan to further explore
STAD-R in collaboration with domain experts in diverse case studies. We also plan to
build a more robust interface that allows the computation and exploration of STAD-R
networks in a tailored environment.
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