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Abstract

Although single-cell RNA-seq is revolutionizing biology, data interpretation remains a challenge. 

We present SCENIC for the simultaneous reconstruction of gene regulatory networks and 

identification of cell states. We apply SCENIC to a compendium of single-cell data from tumors 

and brain, and demonstrate that the genomic regulatory code can be exploited to guide the 

identification of transcription factors and cell states. SCENIC provides critical biological insights 

into the mechanisms driving cellular heterogeneity.

The transcriptional state of a cell emerges from an underlying gene regulatory network 

(GRN) in which a limited number of transcription factors and co-factors regulate each other 

and their downstream target genes. Recent advances in single-cell transcriptome profiling 

have provided exciting opportunities for a high-resolution identification of transcriptional 
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states, and to identify trajectories of transitions between states, for example during 

differentiation 1,2. Statistical techniques and bioinformatics methods have been optimized 

for single-cell RNA-seq, including methods for expression normalization, differential 

expression analysis, clustering, dimensionality reduction, rare cell type identification, and 

trajectory inference 3. Although these methods have led to significant new biological 

insights, it is still unclear whether specific and robust GRNs underlying stable cell states can 

be established. This may indeed be challenging given that at the single cell level, gene 

expression may be partially disconnected from the dynamics of transcription factor inputs 

due to stochastic variation of gene expression consecutive to, for example, transcriptional 

bursting 4. A few methods have been developed that infer co-expression networks from 

single-cell RNA-seq data 5–7, but they do not make use of regulatory sequence analysis to 

predict interactions between transcription factors and target genes.

We reasoned that linking the genomic regulatory code to single-cell gene expression 

variation could overcome drop-outs and technical variation, and could optimize the 

discovery and characterization of cellular states. To this end, we developed a new method, 

called SCENIC (Single-Cell rEgulatory Network Inference and Clustering), to map GRNs, 

and then identify stable cellular states by evaluating the activity of the GRNs in each cell. 

The SCENIC workflow consists of three steps (Fig. 1a, Supplementary Fig. 1 and Online 

Methods). In the first step, sets of genes that are co-expressed with transcription factors are 

identified using GENIE3 8 (Supplementary Fig. 1a). Being based only on co-expression, 

these modules may include many false positives and indirect targets. To identify putative 

direct-binding targets, each co-expression module is analyzed using cis-regulatory motif 

analyses using RcisTarget (Supplementary Fig. 1b and Online Methods). Only modules with 

significant motif enrichment of the correct upstream regulator are retained, and pruned to 

remove indirect target genes without motif support. Next, we score the activity of each of 

these regulons in each cell with AUCell (Supplementary Fig. 1c, Supplementary Fig. 2, and 

Online Methods). The relative scores of each regulon across the cells allow identifying 

which cells have a significantly high sub-network activity. The resulting binary activity 

matrix can be used as a biological dimensionality reduction for downstream analyses. For 

example, performing a clustering on this matrix allows identifying cell types and states 

based on the shared activity of a regulatory subnetwork. In addition, since the regulon is 

scored as a whole, instead of only the TF or individual genes, this approach is robust against 

drop-outs (Supplementary Fig. 3).

To evaluate the performance of SCENIC, we applied it to a scRNA-seq data set with well-

known cell types from the adult mouse brain 9 (Fig. 1b-e). This analysis provided 151 

regulons –out of 1046 initial co-expression modules– that presented significant enrichment 

of the motif of the corresponding transcription factor (7% of the initial TFs). Using the 

activity of these regulons to score each single cell revealed the expected cell types (Fig. 

1d,e), alongside a list of potential master regulators per cell type (e.g., the microglia network 

in Supplementary Fig. 4). The clustering accuracy (cell-type overall sensitivity of 0.88, 

specificity of 0.99, and ARI > 0.80) is better than many dedicated single-cell clustering 

methods 10. To assess the robustness of SCENIC, we re-analyzed the mouse brain data, also 

including runs with only 100 randomly selected cells (to simulate small data sets), or 1/3 of 

the sequencing reads (to simulate low-coverage data sets). Interestingly, SCENIC identified 
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cell types that are represented by only few cells (e.g. 2-6 cells from microglia, astrocytes or 

interneurons, Supplementary Fig. 5). In addition, the transcription factors predicted per cell 

type are consistent with previously established roles (Fig. 1c), and this accuracy outperforms 

standard analysis pipelines (Supplementary Fig. 3e). To validate the Dlx1/2 network 

identified for mouse interneurons, we analyzed a single-nuclei RNA-seq data set of the 

human brain 11 (Supplementary Fig. 6). On the human data, SCENIC also identifies a 

cluster of interneurons strongly driven by DLX1/2, having the same recognition motif as in 

mouse, and a set of conserved targets including DLX1 itself (Fig. 2a-b). Next, we expanded 

this cross-species analysis to other cell types. Interestingly, in contrast to standard clustering 

based on normalized expression, which yields a strong species-driven clustering 

(Supplementary Fig. 7), the SCENIC analysis effectively grouped cells by their cell type 

(Fig. 2c). This suggests that the scoring of network activity is robust and can be exploited to 

overcome batch or technical effects (Supplementary Fig. 3d).

To evaluate SCENIC for the analysis of complex cancer cell states, we applied it to cancer 

cells from two scRNA-seq data sets, the first from oligodendroglioma 12 (4043 cells from 

six tumors), and the second from melanoma 13 (1252 cells from fourteen lesions). Due to 

tumor-specific mutations and complex genomic aberrations, the identification of cancer cell 

states is more challenging than characterizing normal cell types 14. Standard clustering of 

these data sets results in cells grouped by their tumor of origin (Fig. 3a,b). However, 

SCENIC reveals a different picture. On oligodendroglioma, three cancer cell states are 

identified across tumors (Fig. 3c-e), each state driven by expected/relevant TFs, including 

SOX10/4/8, OLIG1/2, and ASCL1 for the oligodendrocyte-like state; SOX9, NFIB, AP-1 

for the astrocyte-like state; and E2F, FOXM1 for the cycling cells. Interestingly, when we 

used diffusion maps on the binary SCENIC matrix (Supplementary Fig. 8), the 

differentiation trajectory was reconstructed: from stem-like, undifferentiated, to the 

oligodendrocyte-like and astrocyte-like branches. Note that this path represents a different 

“trajectory” compared to normal oligodendrocyte differentiation (see Supplementary Fig. 9 

for the SCENIC analysis of 5069 oligodendrocytes). We observed a similar tumor-effect 

correction on the melanoma data, where SCENIC identifies groups of cells across tumors 

(Supplementary Fig. 10), including a cluster of cycling cells, driven by similar transcription 

factors as in oligodendroglioma (e.g., E2F1/2/8 and MYBL2, Fig. 3f-h and Supplementary 

Fig. 10). In contrast to dedicated batch-effect removal methods such as Combat 15 and 

Limma 16, which require specifying the source of batch-effect a priori (Supplementary Fig. 

11), SCENIC removes the tumor-effect automatically, using biologically-driven features.

Interestingly, the melanoma cells fall largely into two groups, one corresponding to a 

MITFhigh state –the archetypical proliferative state– with MITF and STAT/IRF as key 

regulators, and an MITFlow state with up-regulated WNT5A, LOXL2 and ZEB1 expression, 

known markers of invasive states (Supplementary Fig. 10e-f). SCENIC identifies two new 

transcription factors in this MITFlow state, namely NFATC2 (114 predicted target genes) 

and NFIB (15 predicted target genes). NFATC2, a transcriptional repressor operating in the 

JNK/MAPK pathway, is involved in melanoma dedifferentiation to a stem cell fate, and in 

immune escape 17. NFIB on the other hand is linked to stem cell behavior of hair follicle 

and melanocyte stem cells 18, and plays an important role in metastatic progression of small 

cell lung cancer 19. To further explore the potential role of NFATC2 and NFIB this state, we 
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performed immunohistochemistry on 25 melanoma specimens with varying tumor 

progression. Surprisingly, we found the highest NFIB and NFATC2 expression in the 

sentinel lymph nodes, co-localizing with ZEB1 expression, suggesting a relationship with 

the earliest metastatic events (Fig. 3i and Supplementary Fig. 12). When we knocked-down 

NFATC2 using siRNA in A375, a melanoma cell line that shows high NFATC2 and NFIB 

expression (Supplementary Fig. 13), we found that the predicted NFATC2 target genes are 

significantly upregulated (see Online Methods for details). This is consistent with previously 

established role as a repressor 20. In addition, genes involved in regulation of cell adhesion 

and extracellular matrix and several previously-published gene signatures representing the 

melanoma invasive state are also up-regulated (Supplementary Table 1), suggesting that 

NFATC2 may indeed play important role in the progression of the disease. As a second 

validation of the melanoma regulons we tested the predicted targets of MITF and STAT 

using ChIP-seq data (Fig. 3j).

As datasets with increasingly large numbers of single cells are becoming available, we 

suggest two complementary approaches to scale the network inference. The first approach is 

to infer the GRN from a sub-sampled data set, and to include all cells in the scoring step 

with AUCell. We illustrate this approach on a dataset with more than 40000 single-cells 

from the mouse retina (Supplementary Fig. 14). The second approach strives for using more 

efficient machine learning and big data handling solutions. Particularly, we implemented 

GRNboost, a new variant of GENIE3, in Scala on Apache Spark, replacing the Random 

Forest regression with gradient boosting. This new implementation drastically reduces the 

time needed to infer a GRN (Supplementary Fig. 15) and will pave the way to network 

inference on very large data sets, such as the soon available Human Cell Atlas 21.

In conclusion, SCENIC is a generally applicable method for the analysis of single-cell RNA-

seq data that exploits transcription factors and cis-regulatory sequences to guide the 

discovery of cellular states. Our results show that gene regulatory networks constitute robust 

guides to identify cellular states, and that single-cell RNA-seq data are well-suited to trace 

gene regulatory programs in which specific combinations of transcription factors drive cell 

type-specific transcriptomes.

Online Methods

SCENIC workflow

SCENIC is a workflow based on three new R/bioconductor packages: (1) GENIE3, to 

identify potential TF targets based on co-expression, (2) RcisTarget, to perform the TF-

motif enrichment analysis and identify the direct targets (regulons), and (3) AUCell, to score 

the activity of regulons (or other gene sets) on single cells. We also provide GRNboost, 
implemented on Spark 22, as scalable alternative to build the co-expression network on 

bigger datasets (step 1, replacing GENIE3).

The three R/bioconductor packages, and GRNboost, include detailed tutorials to facilitate 

their use within an automated SCENIC pipeline, as well as independent tools. Links to the 

tools, SCENIC code and tutorials are available at http://scenic.aertslab.org.
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GENIE3

GENIE3 8 is a method for inferring gene regulatory networks from gene expression data. In 

brief, it trains random forest models predicting the expression of each gene in the dataset, 

using as input the expression of the transcription factors. The different models are then used 

to derive weights for the transcription factors, measuring their respective relevance for the 

prediction of the expression of each target gene. The highest weights can be translated into 

TF-target regulatory links 8. Since GENIE3 uses Random Forest regression, it has the added 

value of allowing complex (e.g., non-linear) co-expression relationships between a TF and 

its candidate targets. GENIE3 is available in Python, Matlab and R. To allow for inclusion in 

SCENIC workflow, we optimized the previous R implementation of GENIE3. The core of 

this new implementation is now written in C –which makes it orders of magnitude faster–, it 

requires lower memory, and supports execution in parallel. GENIE3 was the top-performing 

method for network inference in the DREAM4 and DREAM5 challenges 23. The new 

package provides similar results in the DREAM challenge to previously existing 

implementations, but with improved speed. The comparison is available at the following 

website: http://www.montefiore.ulg.ac.be/~huynh-thu/GENIE3.html.

The input to GENIE3 is an expression matrix. The preferred expression values are gene-

summarized counts (which might or might not use unique molecular identifiers, UMI 24). 

Other measurements, such as counts or transcripts per million (TPM) and FPKM/RPKM are 

also accepted as input. However, note that the first network-inference step is based on co-

expression, and some authors recommend avoiding within sample normalizations (i.e. TPM) 

for this task because they may induce artificial co-variation 25. To evaluate to what extent 

the normalization of the input matrix affects the output of SCENIC, we also ran SCENIC on 

Zeisel’s dataset after library-size normalization (using the standard pipeline from scran 26, 

which performs within-cluster size-factor normalization). The results are highly comparable, 

both in regards to resulting clusters/cell types (ARI between the cell types obtained from raw 

UMI counts or normalized counts: 0.90, ARI from normalized counts compared to the 

author’s cell types: 0.87), and the TFs identifying the groups (26 out of the 30 regulons 

highlighted in Fig. 1b). Furthermore, during the course of this project we have applied 

GENIE3 to multiple datasets using UMI counts (e.g. mouse brain and oligodendrocytes), 

and TPM (e.g. human brain and melanoma) and both units provided reliable results.

The output of GENIE3 is a table with the genes, the potential regulators, and their 

“importance measure” (IM), which represents the weight that the transcription factor (input 

gene) has in the prediction of the target. We explored several ways to determine the 

threshold (e.g. looking at the rankings, distributions and outputs after pruning with 

RcisTarget), and finally opted for building multiple gene-sets of potential targets for each 

transcription factor: (a) setting several IM thresholds (IM > 0.001 and IM>0.005), (b) taking 

the 50 targets with highest IM for each TF, and (c) keeping only the top 5, 10 and 50 TFs for 

each target gene (then, split by TF). In all these cases, only the links with IM>0.001 were 

taken into account. Furthermore, each gene-set was then split into positive- and negative- 

correlated targets (i.e. Spearman correlation between the TF and the potential target) to 

separate likely activated and repressed targets. Finally, only the gene-sets (TF co-expression 

modules) with at least 20 genes were kept for the following step.
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GRNboost

GRNboost is based on the same concept as GENIE3: inferring regulators for each target 

gene purely from the gene expression matrix. However, it does so using the gradient 

boosting machines (GBM) 27 implementation from the XGBoost library 28. A GBM is an 

ensemble learning algorithm that uses boosting 29 as a strategy to combine multiple weak 

learners, like shallow trees, into a strong one. This contrasts with random forest, the method 

used by GENIE3, which uses bagging (bootstrap aggregation) for model averaging to 

improve regression accuracy. GRNBoost uses gradient boosted stumps (regression trees of 

depth 1) 30 as the base learner. GRNBoost’s main contribution is casting this multiple 

regression approach into a Map/Reduce 31 framework based on Apache Spark 22. In 

GRNBoost, the core data entry is a tuple of a gene and a vector of TF expression values. 

Using a Spark RDD, GRNBoost first partitions the gene expression vectors over the nodes 

available in the compute cluster. Subsequently, it constructs a predictor matrix that contains 

the expression values for all candidate regulator genes. Using a Spark broadcast variable, the 

predictor matrix is broadcasted to the different compute partitions. In the map phase of the 

framework, GRNBoost iterates over the gene tuples (expression vector) and uses the 

predictor matrix to train the XGBoost regression models with the expression vectors as 

respective training labels. From the trained models, the strengths of the regulator-target 

relationships are extracted and emitted as a set of network edges. In the reduce phase, all sets 

of edges are combined into the final regulatory network.

The performance of GRNBoost and GENIE3 was compared on a workstation with 2 Intel 

Xeon E2696 V4 CPUs with in total 44 physical cores or 88 threads and 128 GB of 2133Ghz 

ECC memory. Large datasets and hence large predictor matrices cause the network inference 

to become memory-bound rather than CPU-bound. In order to comfortably fit the amount of 

memory required into the available 128 GB of memory, we decreased the number of 

partitions to 11, therefore having only a maximum of 11 predictor matrices in flight 

simultaneously. However, we increased the number of threads available to each individual 

XGBoost regression to 8, effectively using all available (88) threads in the workstation. 

GRNBoost is written in the Scala programming language and can be used as a software 

library or be submitted as a Spark job from the command line.

RcisTarget

RcisTarget is a new R/Bioconductor implementation of the motif enrichment framework of 

i-cisTarget and iRegulon. RcisTarget identifies enriched transcription factor binding motifs 

and candidate transcription factors for a gene list. In brief, RcisTarget is based on two steps. 

First, it selects DNA motifs that are significantly over-represented in the surroundings of the 

transcription start site (TSS) of the genes in the gene-set. This is achieved by applying a 

recovery-based method on a database that contains genome-wide cross-species rankings for 

each motif. The motifs that are annotated to the corresponding TF and obtain a Normalized 

Enrichment Score (NES) > 3.0 are retained. Next, for each motif and gene-set, RcisTarget 

predicts candidate target genes (i.e. genes in the gene-set that are ranked above the leading 

edge). This method is based on the approach described by Aerts et al. 32 which is also 

implemented in i-cisTarget (web interface) 33 and iRegulon (Cytoscape plug-in) 34. 

Therefore, when using the same parameters and databases, RcisTarget provides the same 
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results as i-cisTarget or iRegulon, benchmarked against other TFBS-enrichment tools in 

Janky et al. 34. More details about the method and its implementation in R are given in the 

package documentation.

To build the final regulons, we merge the predicted target genes of each TF-module that 

show enrichment of any motif of the given TF. To detect repression, it is theoretically 

possible to follow the same approach with the negative-correlated TF modules. However, in 

the datasets we analyzed, these modules were less numerous and showed very low motif 

enrichment, suggesting that these are lower quality modules. For this reason, we finally 

decided to exclude the detection of direct repression from the workflow, and continue only 

with the positive-correlated targets. The databases used for the analyses presented in this 

paper are the "18k motif collection" from iRegulon (gene-based motif rankings) for human 

and mouse. For each species, we used two gene-motif rankings (10kb around the TSS or 

500bp upstream the TSS), which determine the search space around the transcription start 

site.

AUCell

AUCell is a new method that allows identifying cells with active gene regulatory networks in 

single-cell RNA-seq data. The input to AUCell is a gene set, and the output the gene set 

“activity” (AUC) in each cell. In SCENIC, these gene sets are the regulons, consisting of the 

TF and their putative targets. AUCell calculates the enrichment of the regulon as an area 

under the recovery curve (AUC) across the ranking of all genes in a particular cell, whereby 

genes are ranked by their expression value. This method is therefore independent of the gene 

expression units and the normalization procedure. In addition, since the cells are evaluated 

individually, it can easily be applied to bigger datasets (e.g. subsetting the expression matrix 

if needed). In brief, the scoring method is based on a recovery analysis, where the x-axis 

(Supplementary Fig. 1c) is the ranking of all genes based on expression level (genes with the 

same expression value, e.g. '0', are randomly sorted); and the y-axis is the number of genes 

recovered from the input set. AUCell then uses the "Area Under the Curve" (AUC) to 

calculate whether a critical subset of the input gene set is enriched at the top of the ranking 

for each cell. In this way, the AUC represents the proportion of expressed genes in the 

signature and their relative expression value compared to the other genes within the cell. The 

output of this step is a matrix with the AUC score for each gene-set in each cell. We use 

either the AUC scores (across regulons) directly as continuous values to cluster single-cells, 

or we generate a binary matrix using a cutoff of the AUC score for each regulon. These 

cutoffs are determined either automatically, or manually adjusted by inspecting the 

distribution of the AUC scores. Some examples of AUC distributions are provided in 

Supplementary Fig. 2a. Supplementary Fig. 2b-c shows the validation of AUCell using 

previously published neuronal and glial gene signatures. The tutorial included in the 

package, also includes practical explanations and implications of each of the steps of the 

method.

Cell clustering based on GRNs

The cell-regulon activity is summarized in a matrix in which the columns represent the cells 

and the rows the regulons. In the binary regulon activity matrix, the coordinates of the 
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matrix that correspond to active regulons in a given cell will contain a “1”, and “0” 

otherwise. The equivalent matrix, containing the continuous AUC values for each cell-

regulon, is normally referred to as the AUC activity matrix. Clustering of either of the 

regulon activity matrices reveals groups of regulons (jointly a network) that are recurrently 

active across a subset of cells. The binary activity matrix tends to highlight higher-order 

similarities across cells (and therefore, highly reduces batch effects and technical biases), on 

the other hand, the AUC matrix allows to observe more subtle changes. For visualization, we 

have mostly used t-SNEs (Rtsne package35, always tested consistency across several 

perplexity values and distance metrics/number of PCs), and heatmaps with hierarchical 

clustering (although the heatmap figures feature selected regulons, the t-SNEs are always 

run on the whole matrices). In the tutorials, we have also included several options to explore 

the results. For example, to detect most likely stable states (higher-density areas in the t-

SNE), and to help identify key regulators, known cell properties (based on the dataset 

annotation) and GO terms (GO enrichment analysis of the genes in the cluster of regulons) 

that might be associated to the detected states.

SCENIC runs on the different datasets

SCENIC was run on all the datasets using the expression matrices provided by the authors 

(downloaded from GEO or the authors website), including only the cells that passed their 

quality control, and the default gene filtering for GENIE3 (which resulted in 12-15k genes). 

The standard SCENIC workflow was run on all datasets (the version at the time of 

publication is available as supplementary file, updated versions can be found at http://

scenic.aertslab.org). A more detailed description of the datasets and the any peculiarities for 

each analysis are available in Supplementary Note 1. Here we provide a brief description of 

the datasets:

Mouse cortex and hippocampus (Zeisel et al.9, GSE60361): single-cell RNA-seq of 3005 

brain cells of juvenile mice (21-31 days old). It contains the main cell types in hippocampus 

and somatosensory cortex, namely neurons (pyramidal excitatory neurons, and 

interneurons), glia (astrocytes, oligodendrocytes, microglia), and endothelial cells. 

Expression matrix units: UMI counts.

Human neurons (Lake et al. 11): single-nuclei RNA-seq of 3083 neuronal cells from a 

normal human brain (retrieved postmortem from a 51-year old female, from six different 

Brodmann areas). Expression matrix units: TPM.

Human brain (Darmanis et al.36, GSE67835): scRNA-seq from 466 cells from adult and 

fetal human brains. The fetal samples were taken from four different individuals at 16 to 18 

weeks post-gestation. The adult brain samples were taken from healthy temporal lobe tissue 

from 8 different patients (21 - 63 years old) during temporal lobectomy surgery for 

refractory epilepsy and hippocampal sclerosis. Expression matrix units: logged CPM.

Mouse oligodendrocytes (Marques et al. 37, GSE75330): scRNA-seq data of 5069 cells 

from the oligodendrocyte lineage. Cells were obtained from several different mouse strains 

and isolated from ten different regions of the anterior-posterior and dorsal-ventral axis of the 
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mouse juvenile and adult CNS; including white and grey matter. Expression matrix units: 

UMI counts.

Oligodendroglioma (Tirosh et al. 38, GSE70630): scRNA-seq expression profiles for 4347 

cells from 6 untreated grade II oligodendroglioma tumors with either IDH1 or IDH2 

mutation, and 1p/19q co-deletion. Only the tumoral cells were used for the analysis (selected 

by the authors based on CNV profile). Expression matrix units: log2(TPM+1).

Melanoma (Tirosh et al. 13, GSE72056): scRNA-seq of 1252 melanoma cells from 14 

different tumors. These include only the cells that are labeled as malignant by the authors, 

based on their CNV profiles. Expression matrix units: log2(TPM/10+1).

Mouse retina (Macosko et al. 39, GSE63472): scRNA-seq data of 44808 cells obtained 

through Drop-seq from mouse retina (14 days post-natal). Expression matrix units: 

log((UMI counts per gene in a cell/Total UMI counts in cell)*10000)+1)].

Embryonic mouse brain (10X Genomics): Chronium Megacell demonstration dataset 

containing 1,306,127 cells from cortex, hippocampus and subventricular zone of two E18 

mice (strain: C57BL/6).

Gene filtering

For gene filtering to run GENIE3, we applied a soft filter based on the total number of 

counts of the gene, and the number of cells in which it is detected. The first filter, the total 

number of reads per gene, is meant to remove genes that are most likely unreliable and 

provide only noise. The specific value depends on the dataset, for the ones used in this paper 

we set the thresholds at, for example, 3 UMI counts (slightly over the median of the non-

zero values) multiplied by 1% of the number of cells in the dataset (e.g. in mouse brain: 3 

UMI counts x 30 (1% of cells) = minimum 90 counts per gene). The second filter, the 

number of cells in which the gene is detected (e.g. >0 UMI, or >1 log2(TPM)), is to avoid 

that genes that are only expressed in one, or very few cells, gain a lot of weight if they 

happen to coincide in a given cell. In the workflow, we recommend to set a percentage lower 

than the smallest population of cells to be detected. For example, since microglia cells 

represent approximately 3% of the total cells in the dataset, we used a detection threshold of 

at least 1% of the cells.

Cross-species network comparisons

SCENIC was run independently for each of the three datasets used for the GRN comparison: 

Zeisel et al. (mouse brain cells), and Lake et al. (human neurons nuclei) and Darmanis et al. 

(human brain cells). To compare the networks across species, the genes in the human 

regulons were converted into the homologous mouse genes using Biomart (through biomaRt 

R package 40), and vice versa (the mouse regulons into human genes). In Fig. 2a, the genes 

highlighted in red also have associations with Dlx1/2 in GeneMANIA 41 (protein-protein 

interactions, genetic interactions, co-expression, or literature co-mentioning).

For the cross-species cell clustering (Fig. 2c), the genes in the mouse expression matrix were 

converted into the homologous human genes, and merged with Darmanis’ expression matrix 
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by row (only genes available in both matrices are kept). The 259 human regulons from 

Darmanis’ dataset, and the human homologs of the mouse regulons were evaluated on this 

merged matrix to obtain the binary regulon activity containing 410 regulons. The cells were 

clustered based on the binary activity matrix using Ward’s hierarchical clustering with 

Spearman’s distance. Similar results were obtained for the reverse approach (converting the 

expression matrix into mouse genes, to evaluate the mouse regulons). In order to provide an 

alternative approach based only on expression (Supplementary Fig. 7), we also generated a 

merged expression matrix. Since the merged data sets use different measurement units (CPM 

in human and UMI in mouse), each matrix was Z-score normalized by gene before merging.

Method comparisons

We performed different evaluations and benchmark comparisons, each assessing a different 

aspect of SCENIC (e.g. cell type identification, TF identification, co-founding effect 

correction…). The detailed description of how these comparisons were performed is 

available in Supplementary Note 1. Here we provide a brief summary:

Cell clustering: To determine whether the clustering based on gene regulatory network 

activity matches real cell types, we compared the clustering based on the regulon activity 

matrices to the cell labels provided in the corresponding publications. To compare SCENIC 

performance to other methods, we re-used the benchmark presented in the SC3 publication 

10, which provides the adjusted Rand index (ARI) for 6 clustering methods on the mouse 

brain dataset.

TF-motif discovery: The validation of the TFs identified by SCENIC was mainly done by 

confirming their role in the given cell type in literature (e.g. Fig. 1e). However, we also 

compared SCENIC to an alternative approach to identify TFs potentially regulating cell 

states: Applying transcription factor motif enrichment analysis on genes differentially 

expressed between clusters (i.e. gene signature, or markers for a cell type).

Batch effect correction: The results of SCENIC on the oligodendroglioma dataset 

(clustering of the full binary regulon activity matrix) were compared to Combat 15,42 and 

Limma 16,43 correcting for “patient of origin” as source of batch effect.

Cycling cells: The cycling cells were predicted based on consistent up-regulation of 46 sets 

related to the mitotic cell cycle from amiGO and cycleBase 1.0 and 2.0. We then compared 

the ability of different clustering methods to identify these cells (sensitivity and specificity). 

Since most of the methods provide multiple clusters as output, to compare their results, for 

each method we selected the cluster with the largest amount of CC cells.

Immunohistochemistry of melanoma biopsies

Immunohistochemistry with antibodies for melanA, EPHA2, ZEB1, NFATC2 and NFIB was 

performed on formalin-fixed, paraffin-embedded melanoma samples. The samples include 

biopsies of 9 primary melanomas (4 in radial growth phase and 5 in vertical growth phase), 8 

melanoma-containing sentinel lymph nodes, and 8 melanoma metastases. A detailed 

description of how the immunohistochemistry was performed is available in Supplementary 

Note 1.
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Knock-down of NFATC2 in melanoma cell culture

The A375 cell line was selected as representative of the MITFlow state based on expression 

of NFATC2, NFIB (Supplementary Fig. 13) and SOX10, after comparing 59 melanoma cell 

lines from the COSMIC Cancer Cell lines Project 44. Knockdown of NFATC2 was 

performed in A375 using NFATC2 siRNA, and total RNA was extracted 72 hours after the 

knockdown. The final libraries were pooled and sequenced on a combination of NextSeq 

500 and HiSeq 4000 (Illumina). RNA-seq reads were mapped to the genome (hg19) for 

upstream analysis. A detailed description of the methods, including cell line source, knock-

down of NFATC2, RNA-seq protocol and bioinformatics analysis, are available in 

Supplementary Note 1.

Software packages, code and data availability

Updated links to the packages and tutorials related to SCENIC are available at http://

scenic.aertslab.org; the package versions at the time of publication are provided as 

Supplementary Software.

The NFATC2 knock-down RNA-seq data have been deposited in NCBI's Gene Expression 

Omnibus 45 and are accessible through GEO Series accession number GSE99466.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. The SCENIC workflow and its application to the mouse brain.
(a) Co-expression modules between transcription factors and candidate target genes are 

inferred using GENIE3 or GRNBoost. RcisTarget identifies those modules where the 

regulator’s binding motif is significantly enriched across the target genes; and creates 

regulons with only direct targets. AUCell scores the activity of each regulon in each cell, 

yielding a binarized activity matrix. Cell states are based on the shared activity of regulatory 

subnetworks. (b) SCENIC results on the mouse brain 9; cluster labels correspond to 9; 

master regulators are color-matched with the cell types they control. (c) transcription factors 

confirmed by literature (A) or having brain phenotypes from MGI (B), and the enriched 

DNA motifs are shown. (d) t-SNE on the binary regulon activity matrix. Each cell is 

assigned the color of the most active GRN. (e) Accuracy of different clustering methods on 

this dataset.
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Figure 2. Cross-species comparison of neuronal networks and cell types.
(a) DLX1/2 regulons inferred from mouse and human brain scRNA-seq data. The genes 

highlighted in red have associations with Dlx1/2 in GeneMANIA. (b) Reciprocal activity of 

human and mouse Dlx1/2 regulons on mouse and human single-cell data. (c) Joint clustering 

of human and mouse brain scRNA-seq data based on GRN activity. Colored TF names 

correspond to regulons identified both in the human and mouse SCENIC runs.
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Figure 3. SCENIC overcomes tumor effects and unravels relevant cell states and GRNs in cancer.
(a-b) t-SNEs on the expression matrices, colored by tumor of origin. (c-d, f-g) t-SNEs on 

the binary activity matrix (e,h) after applying SCENIC. In d and g, cells are colored by GRN 

activity. (i) Immunohistochemistry (IHC) on 25 human melanomas using NFATC2, NFIB, 

ZEB1, and EPHA2 antibodies. The heatmap shows the percentage of cells that are positive 

for each marker in the given sample. On the right, a representative example of IHC for NFIB 

on a sentinel lymph node is shown (for additional images, see Supplementary Fig. 13). (j) 
Aggregation plots for MITF and STAT1 ChIP-seq signal on the predicted target regions, and 

as control randomly selected genomic regions with MITF/STAT motif occurrences.
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