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Summary  

The medical system is entering into an era of ‘Big Data’. In the medical sphere big data can 
refer to the information in medical and health science texts. There is a huge demand to mine 
information hidden in the texts (e.g., information of patients, patterns across patients, causal 
relationships of diseases) since this information may have significant values for drug 
development, disease diagnosis and healthcare management (ACCUMULATE, 2016). 
However, non-well-formed medical texts make it difficult to automatically recognise this crucial 
information, let alone the utility of the information. Therefore, people have started to look for 
advanced analytical tools to address this issue.  

Recently, researchers have proposed to use natural language processing (NLP) on medical 
texts to extract valuable information from a myriad of datasets (Baud et al., 1992; Meystre et 
al., 2006; Miñarro-Giménez et al., 2015). One of the models in NLP, the so-called distributed 

word representation, has gained a lot of attention since it embeds words into a dense, real 
valued vector while capturing useful semantic and syntactic properties of the words and 
grouping similar words at the same time (Turian et al., 2010; Mikolov et al., 2013b). Although 
distributed word representation enables computers to derive meaning from human or natural 
language input, word vectors produced by this technique are always in high-dimensional 
spaces. Therefore, it is necessary to find an appropriate dimensionality reduction (DR) method 
to transform high-dimensional datasets into a meaningful low-dimensional map thus allowing 
people to visualise vector datasets for the naked eye. 

Traditional dimensionality reduction techniques are linear techniques such as principal 
component analysis (PCA) or multidimensional scaling which aim at finding a linear subspace 
of lower dimensionality to represent a high-dimensional dataset (Ghodsi, 2006). Due to their 
linearity, these algorithms tend to preserve large pairwise distances. However, the local 
pairwise distances of high-dimensional data are more reliable than the large pairwise distances 
when the intrinsic dimension of high-dimensional data lies on a non-linear manifold (Van der 
Maaten and Hinton, 2008a). To address the limitation of linear DR methods, researchers come 
up with nonlinear DR methods such as t-student stochastic neighbour embedding (t-SNE) and 
Isomap which tend to keep data points that are similar in high dimensional data still close 
together in the low dimensional map (Van der Maaten et al., 2008b). 

In this study, we introduce five DR methods: (1) principal component analysis, (2) t-student 
stochastic neighbour embedding, (3) Isomap, (4) Local linear embedding (LLE) and (5) 
Laplacian Eigenmaps (LE). We apply these methods as a visualisation tool to the 50-
dimensional medical dataset generated by the skip-gram method and make a comparison of 
the performance across methods. Afterwards, we use the analogy tests to evaluate the quality 
of the word vectors of the unstructured medical corpus. Our study demonstrates that in terms 
of clustering structure and the stability of the technique under parameters and data variations, 
t-SNE exhibits the strongest performance on the skip-gram processed medical dataset 
compared to other four DR techniques. The results in the semantic and syntactic tests show 
that similar words are close to each other while they do not display syntactic and semantic 
similarity - word vectors go in a similar direction and sometimes even the length of the vectors 
are also similar. 
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1 Introduction 
With the increase of unstructured medical texts in size and complexity, a large amount of 
crucial medical information (e.g., patterns across patients, causal relationships of diseases) is 
buried in these texts. Studies have found that the buried information may have specific 
applications in drug development, patient treatment and healthcare management 
(ACCUMULATE, 2016). Therefore, it is becoming extremely important to help companies, 
organizations and individuals to automatically recognize valuable information in a myriad of 
non-well-formed medical texts.  Recently, researchers have proposed to use natural language 

processing (NLP) on medical files to recognize crucial patterns in the information hidden in the 
datasets (Baud et al., 1992; Meystre, 2006; Miñarro-Giménez et al., 2015). The goal of natural 
language processing is to design an appropriate algorithm to make computers understand 
natural language text or speech to perform a myriad of tasks (Chowdhury, 2003). At the core 
of any NLP task is how we represent the words as input to our models. Many natural language 
processing techniques treat words as discrete atomic units, which ignores the relationships 
that may exist between the individual words (Brants et al., 2007). Recently, with the progress 
of machine learning techniques, more complex NLP models are feasible, in which one of the 
most successful concepts is to use distributed representations of words (Mikolov et al., 2013a). 
The underlying idea of distributed word representations is to represent each word w in 
vocabulary V as a continuous-value vector of dimensionality d (d is smaller than V) (Qu et al., 
2015). 
Although distributed word representation enables computers to derive meaning from human 
or natural language input, word vectors produced by this technique are always on high-
dimensional spaces. The curse of dimensionality reveals that the fast increase of 
dimensionality of data will make valuable data becoming ‘sparse’ (Bellman, 1961; Steinbach, 
2003). This phenomenon has a negative effect on obtaining a reliable result based on the data. 
Dimensionality reduction (DR) methods have gained a lot of attention to address this issue 
since it can transform high-dimensional data into a meaningful reduced representation, thereby 
helping people to gain insights from the data. DR methods are divided into two types, linear 
and nonlinear methods. The nonlinear DR methods are always thought to have a stronger 
performance than linear methods and some research has confirmed that the nonlinear DR 
techniques perform well on nonlinear datasets (Brun et al., 2003; Lim et al., 2003; Niskanen 
and Silvén, 2003; Duraiswami and Raykar, 2005). However, it is not always the case. Some 
researchers find that nonlinear DR techniques failed in some datasets or they do not 
outperform the linear DR method ‘PCA’ on natural datasets (Lim et al., 2003; Van der Maaten, 
2008b). Therefore, when it comes to a natural dataset, it is necessary to perform a comparison 
of dimensionality reduction methods to find an appropriate method. 
In this study, we introduce five DR methods (PCA, t-SNE, Isomap, LE and LLE) to the skip-
gram processed, unstructured medical corpus whose texts are derived from Medscape. Firstly, 
we perform these DR methods on a randomly-chosen-words dataset to have a basic 
knowledge of cluster structures. Secondly, to check the performance of the methods in the 
specific domain, we use these methods on the six ‘word lists’ filtered dataset and evaluate the 
arrangement of groups in the projections. In addition, we study the stability of these methods 
under the cost function parameter and data change by evaluating geodesic distance and 
cluster structures variations. At the end, we use the DR method with the best performance to 
evaluate the quality of word vectors by analogy tests.  
The paper will be structured as follows: First we give a literature review on word representation 
and dimensionality reduction methods, secondly we introduce the methodology of 
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dimensionality reduction methods, thirdly we present our result of dimensionality reduction 
methods and word vector evaluation, finally we draw conclusions on our results.  
 

2 Literature review 

2.1 Word representation 

A word representation is a NLP technique that deals with words. There are three types of 
word representation: 

1. Distributional representation methods. They map a word w to a context word vector Cw 

based on a co-occurrence matrix F (W C× ) between the word w and its context words, 

where W is the vocabulary size, each row Fw is the initial representation of word w, and 
each column Fc is some context (Turian et al., 2010). One can project the matrix F into a 

lower-dimensional matrix f (W d×  ), with d C≪  , using some function g. For example, 

Dumais (Dumais et al., 1988) uses the DR technique singular value decomposition to 
compute the matrix f.  

2. Cluster-based representation methods. They induce clusters of words by applying either 
soft or hard clustering algorithms1(Qu et al., 2015). Some of them use the same matrix as 
distributional methods. For example, Pereira (1993) uses the co-occurrence matrix firstly 
and then transforms this matrix into a cluster. One of the well-known cluster-based methods 
is Brown clustering which uses a hierarchical clustering algorithm to maximize the mutual 
information of bigrams (Brown et al., 1992).   

3. Distributed representation methods. Instead of training words as discrete units, distributed 
representation methods help mapping words into dense, low-dimensional, and real valued 
vectors which are called ‘word embeddings’ (Turian et al., 2010; Qu et al., 2015). Each 
dimension of a word vector represents an intrinsic characteristic of the word. A good 
distributed representation method should capture useful semantic and syntactic properties 
of the words and at the same time keep similar words close. Rumelhard, Hinton and 
Willians (1986) starts to use word representation ‘idea’. This ‘idea’ has since been used in 
different fields such as automatic speech recognition, machine translation and mobile text 
entry and achieved considerable success.  

Word2vec is one of the most popular word representation models based on distributed 
representation models. It has gained a lot of attention because of its computationally-efficient 
ability (Richard et al., 2016). High-quality vector representations of words are obtained without 
providing any example datasets to train the machine in advance which is usually required in 
supervised deep learning. Instead of using the co-occurrence matrix directly, word2vec 
(Mikolov et al., 2013b) predicts surrounding words of every word within a window size ‘m’. Two 
architectures of word2vec are skip-gram models and continuous bag-of-words models (CBOW) 
(Mikolov et al., 2013a). The skip-gram model’s aim is to predict context-words from a center 
word. For example, assuming a given sentence “The cat jumped over the puddle” in which the 
center word is “jumped”, skip-gram predicts the surrounding words “The”, “cat”, “over”, “the”, 
“puddle” from this center word (Richard et al., 2016). As opposed to the skip-gram model, the 
CBOW model predicts a center word given the surrounding context, that is, using the context-
words “The”, “cat”, “over”, “the”, “puddle” predicts the target word “jumped”. The inversion 

                                                           
1 Soft clustering: clusters may overlap 

   Hard clustering: clusters do not overlap 
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between the CBOW and the skip-gram influences the choice of the two models based on the 
size of datasets. The CBOW model is more suitable for smaller datasets since it takes the 
surrounding context as one observation and simplifies a lot of distributional information, while 
the skip-gram model treats each context word as a new observation, which makes the model 
work better for larger datasets (TensorFlow, 2016).  
Mikolov et al. (2013c) demonstrate that there exist linguistic regularities in vector-space word 
representations. In general, there are two methods to evaluate the quality of word vectors: 
intrinsic and extrinsic evaluations. Intrinsic evaluations use specific tasks such as relatedness 
and analogy to measure the quality of word vectors and thereby providing the inner working 
knowledge of the word embedding techniques. A popular choice of intrinsic evaluations is 
analogy tests. Analogical tests show that similar words after an embedding technique are not 
only clustered together, but also these words present linguistic regularities and patterns. This 
phenomenon has been shown in some studies (Mikolov et al., 2013a; Mikolov et al., 2013b; 
Mikolov et al., 2013c; Lomonaco, 2015). Extrinsic evaluations apply word embeddings on the 
real task such as semantic role labeling or part-of speech tagging to evaluate the quality of 
word vectors (Schnabel, 2015). Compared to intrinsic evaluations, extrinsic evaluations are 
relatively slow in computation because of elaborate tests (Zhai et al., 2015; Schnabel, 2015). 
Since extrinsic tasks are relatively time-consuming and difficulty to work well, we only choose 
intrinsic evaluations in our study. 

2.2 Dimensionality reduction methods 

One essential component of the data analysis is to get an intuition on how those data is 
arranged in the data space via visualisation techniques, which improves the human 
comprehension of data. Real-world data is usually high dimensional. Having too many 
variables can sometimes be described as a curse of dimensionality (Bellman, 1961). Therefore, 
finding an appropriate visualisation tool is important for the visualisation of high-dimensional 
data in different fields of research. Over the last few decades, a lot of techniques have been 
proposed. For instance, iconographic techniques such as Chernoff faces and pixel-based 
techniques help to decrease dimensions of data. However, the reduced dimensionality 
generated by these techniques are more than two dimensions, which is still difficult for people 
to interpret the results (Chernoff, 1973; Keim, 2000). A popular way to perform a visualisation 
of high-dimensional data are DR methods. DR methods transform high-dimensional data into 
lower-dimensional representations which preserves as much information as in the original data 
(Fodor, 2002; Ghodsi, 2006). DR techniques are divided into linear techniques and nonlinear 
DR methods. 

2.2.1. Linear dimensionality reduction 

Linear DR methods map linear representations of high-dimensional data to a lower-
dimensional space. Assuming n d-dimensional observations, each observation is represented 
by x=(x1, O, xp)T and we define i and j as the number of dimensions and the number of 
observations, respectively (Fodor, 2002)2:  

The mean of the ith random variable: �
,1

1 /
n

i i jj
x n xµ

=
= = ∑ , 

The standard deviation of the ith random variable: � 2

,1
1 / ( )

n

i i j ij
n x xσ

=
= −∑ , 

Standardize the observation xi, j: � �
,

( ) /
i j i i
x u σ− . 

For linear techniques, we will get a n*k ( k p≤ ) data y which is a linear combination of the 

                                                           
2 The equations in this page and next page are taken from Fodor, 2002 (p1-2).  
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original variables 

1 1 ....i i ip py a x a x= + + , for i=1, O, k 

Simplifying the equation to iy ax= , where ak*p is a linear transformation weight matrix, 

In terms of an n*p observation matrix X, we have 

1 1 ....ij i j ip pjy a x a x= + + , for i=1, O, k, and j=1,O,n 

Equivalently, k n k p p ny a x× × ×=  

Linear DR methods have been developed in domains such as biology, chemistry, landscape 
ecology and artificial intelligence research for over a century (Riitters et al, 1995; Du et al., 
2006; Kumar et al., 2014). Du et al. (2006) proposes amino acid principal component analysis 
in protein structure classification. This method maps high-dimensional amino acid composition 
data into an orthogonal lower-dimensional space (Du et al., 2006). Factor analysis (Riitters et 
al, 1995) is used to identify the common factors of landscape pattern and structure by reducing 
fifty-five dimensional landscape data. Linear DR methods are popular partly due to their simple 
geometric interpretation of high-dimensional data in a low-dimensional space (Cunningham 
and Ghahramani, 2015). 
A lot of linear dimensionality reduction methods have been developed such as the PCA, factor 
analysis, multidimensional scaling (MDS), Fisher’s linear discriminant analysis (LDA), 
canonical correlations analysis (CCA), and others.  
PCA is by far one of the most popular linear DR methods plays an important role in data 
analysis. The goal of PCA is to find a new set of variables, the principal components (PCs), 
that are orthogonal and linear combinations of the original dimensions. PCs are computed by 
using a general eigendecomposition of a covariance or a correlation matrix. A decision on using 
a covariance or a correlation matrix in PCA influences the result of low-dimensional 
representations (Borgognone et al., 2001). Notably PCA is sensitive to the scale difference of 
variables. Assuming a set of variables in a dataset with widely varying scales (e.g. length, 
temperature, blood pressure), the choice of units of variables will decide the structure of the 
principal components derived from the covariance matrix (Brian and Torsten, 2011). Moreover, 
the first principal component will mainly explain the variables with the largest variance. One 
can only use covariance matrix when the variables are on the similar scale. However, it is not 
always the case in practice. Instead, in practice, one should derive principal components from 
correlation matrix, R, that rescale the variance of the original data to a unit. However, we still 
use the covariance matrix although the scales of variables are different when the variance of 
the original variables is important (Brian and Torsten, 2011).  

2.2.2. Nonlinear dimensionality reduction 

In terms of which distances to preserve, linear DR methods such as PCA tend to retain large 
pairwise distances, which means that data that are not similar in the original data are still 
dissimilar in a lower subspace (Cunningham and Ghahramani, 2015; Ghodsi, 2006). Although 
linear DR methods are able to extract effective features of high-dimensional data and display 
these features in a low-dimensional map, these large distances are actually not informative 
when the data is complex (Van der Maaten and Hinton, 2008a). For example, when the high-
dimensional data lies on a nonlinear manifold, their Euclidean distances in the high 
dimensional space may not accurately reflect their intrinsic similarities (Tenenbaum et al., 
2000). It is usually more important to retain local distances that are used to make sure similar 
data points in high dimensional data still close together in the low-dimensional map (Rai, 2011; 
Ghodsi, 2006). This is typically not possible with a linear DR method. It is proven by the Swiss-
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roll dataset in figure 1. It shows that the linear projection PCA cannot capture intrinsic 
structures while in nonlinear projection clusters are presented well. Nonlinear DR methods 
have gained more attention since these kinds of datasets are very common in machine 
learning.  

Figure 1: PCA and nonlinear technique in a nonlinear manifold 

Linear projection Nonlinear projection 

Source: Rai, 2011: p13-14. 
 

Based on the relation to linear methods, nonlinear DR methods can be defined as: 1) nonlinear 
DR methods developed from linear DR methods, such as kernel PCA; 2) manifold based 
methods such as Isomap, LLE and t-SNE.  

2.2.3 Challenges and current solutions 

Due to linearity of linear DR methods, their algorithms tend to preserve large pairwise distances. 
However, when the intrinsic dimension of high-dimensional data lies on a non-linear manifold, 
the large pairwise distances that DR methods tend to preserve are not reliable (Van der Maaten 
and Hinton, 2008a). To address this issue, researchers have come up with a variety of 
nonlinear DR methods such as t-SNE (Van der Maaten and Hinton, 2008a), Isomap 
(Tenenbaum et al., 2000) and Local linear embedding (Roweis and Saul, 2000). The main 
drawback of PCA is that the size of the covariance matrix is proportional to the dimensionality 
of the data points (Mishra et al., 2012). As a result, in a dataset with a large number of data 
points or very high dimensions, it becomes impossible or very slow to compute the 
eigenvectors. In the situation when the number of data points is smaller than the number of 
dimensions, researchers switch from PCA to classical scaling since classical scale deals with 
the number of data points instead of the number of dimensions (Torgerson, 1952). When the 
dataset is with high dimensions, an iterative method ‘simple PCA’ is be used as a fast 
approximation for PCA (Partridge and Calvo, 1997). 
Although the nonlinear DR method ‘t-SNE’ is more competitive than PCA in many aspects (e.g. 
clustering structure and stability), its computational requirement and memory are more 
complex than PCA when the number of data points is large (Van der Maaten and Hinton, 
2008a). In the choice of DR methods, it is also important to consider how time consuming each 
method is. To address this limitation of t-SNE, Van de Maaten (2013) comes up with Barnes-
Hut-SNE by using a sparse distribution3 to approximate the pairwise similarity probability pij

4. 
Since a Gaussian distribution is used in the computation of the pairwise probability pij, pij will 

                                                           
3 A sparse distribution in which infinitesimal pairwise similarity probabilities are changed to zero (Van de 

Maaten, 2013).  
4 A pairwise similarity probability is used to measure the similarity between two data points. In a high-

dimensional space where there are many objects, we take a high-dimensional object called xi and center a 

Gaussian at xi. Next the probabilities of all the other points xj under this Gaussian are computed by dividing a 

density of by xi and xj the sum of these densities. (Van der Maaten, L. and G. Hinton, 2008a) 
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be almost infinitesimal if two points are widely separated (Van der Maaten and Hinton, 2008a). 
Therefore, replacing pij by a sparse approximation will not have considerable influence on the 
quality of the result embeddings (Van de Maaten, 2013). Another drawback of t-SNE is non-
parametric property. It causes an out-of-sample extension problem: when the old dataset is 
updated with some new data points, we cannot map new high-dimensional data points into the 
existing low-dimensional space directly (Strange and Zwiggelaar, 2011). This problem can be 
solved by applying parametric t-SNE (Van der Maaten, 2009). Isomap suffers from:  
1) topological instability which will influence the construction of the neighbourhood graph G 
(Van der Maaten et al., 2008b). To solve this problem, Saxena et al. (2004) proposes a new 
algorithm which uses local linearity property of the manifolds and only keeps nearest 
neighbours that meet local linearity assumption of neighbourhood graph G.  
2) “holes” in the manifold which impair the performance of Isomap. This weakness can be 
overcome by tearing or cutting the ‘circular’ manifolds (Lee and Verleysen, 2005).  
Both linear and nonlinear DR methods have their advantages and disadvantages. When it 
comes to a natural dataset, it is necessary to perform a comparison of dimensionality reduction 
methods to find an appropriate method. 
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3 Methodology  
We introduce one linear DR methods and four nonlinear DR methods in 3.1 and 3.2. Then we 
present the analogy tests that are used to evaluate the quality of word vector in 3.3. 

3.1 Linear dimensionality reduction methods 

3.1.1 Principal component analysis (PCA) 

The basic aim of PCA is to map a high-dimensional dataset where a set of variables are 
correlated into a low-dimensional subspace where a new set of variables are uncorrelated 
while explaining the original variation as much as possible in the new subspace (Brian and 
Torsten, 2011; Wolfgang Karl and Simar. 2012). This aim can also be described as finding a 
new set of variables, the principal components (PCs), that are orthogonal and linear 
combinations of the original dimensions. A graphical representation of a PCA transformation is 
shown in figure 2.  

Figure 2: Graphical representation of a PCA transformation 

Source: Scholz, 2006: p1. 

 
The PCs is arranged in a sorted order according to the variance they explain. The first PC in 
figure 2 is the linear combination of the original variables whose sample variance is largest 
among all PCs. The second PC is also the linear translation of the original variables that 
accounts for a maximal proportion of the remaining variance and is orthogonal to the first PC. 
The rest PCs are described in the similar way. The PCs are computed by performing a general 
eigendecomposition of the covariance matrix of the original data.  
The number of PCs is as same as the number of the original variables. The general hope of 
PCA is that the first few PCs will explain a substantial variance in the original data and can 
hence be used to form new coordinates (Brian and Torsten, 2011). Although we lose some 
information by throwing away some PCs, we will not lose too much if the eigenvalues of these 
PCs are small. We can select the appropriate number of PCs to maintain a given percentage 
of the total variation explained according to scree diagram plots, i.e. the cumulative proportions 

plots. The selection of the number of PCs can also be determined by fixing a threshold λ0, 

only keeping the principal components whose eigenvalues are larger than λ0 (Fodor, 2002). 

3.2 Nonlinear dimensionality reduction methods 

3.2.1. T-distribution stochastic neighbor embedding (t-SNE) 

T-SNE tends to preserve small pairwise distances, instead of focusing on preserving large 
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pairwise distances (Van der Maaten and Hinton, 2008a). Basically we are trying to make sure 
that the nearest neighbours of a point in the original data are also nearest neighbours of the 
point in a low-dimensional map. T-SNE is a method that develops from stochastic neighbor 
embedding (SNE).  
Stochastic neighbor embedding (SNE) is first proposed by Hinton and Salakhutdinov (2002). 
The mechanism is as follows: In a high-dimensional space where there are many objects, we 
take a high-dimensional object called xi and center a Gaussian at xi. Next the probabilities of 
all the other points xj under this Gaussian are computed by dividing a density by the sum of 

these densities. The variance σi is selected by a binary search where the user specifies a 

fixed perplexity and produces Pi accordingly (Van der Maaten and Hinton, 2008a). The 
perplexity can be interpreted as the effective number of neighbours of one point and the value 
is often set between 5 and 50 (Van der Maaten and Hinton, 2008a). The probability distribution 
of pairs of points i, j is given as5 
 

2
2

/ 2 2

exp( 2 )

exp( 2 )

i j i

j i

i k ik i

x x
P

x x

σ

σ
≠

− −
=

− −∑
. 

We set the value of Pi/i equal to zero as we only deal with pairwise similarities. If two data points 

are relatively close, the probability /j iP  is high, while the probability will be almost infinitesimal 

if two points are widely separated.  
In the low dimensional space, the dots that represent points in a high-dimensional space are 

written as yi and yj. We set the variance of the Gaussian in the conditional probability /j iq  to ½ 

and the rest of operation is the same as that in the high-dimensional space. The conditional 

probability /j iq  is given as 

2

/ 2

exp( )

exp( )

i j

j i

i kk i

y y
q

y y
≠

− −
=

− −∑
. 

We also set the value of /i iq  equal to zero. 

Ideally we want to match the conditional probabilities /j ip  in the low-dimensional map with /j iq . 

The mismatch between two probabilities is measured by the Kullback-Leibler: 

/

/

/

(P ) log
j i

i i j i

i i j j i

p
C KL Q p

q
= =∑ ∑∑ . 

where Pi and iQ are the conditional probabilities over all data points in high-dimensional and 

low-dimensional spaces, respectively.  
If the two distributions are the same, the cost function is zero. SNE minimizes the cost function 
by the gradient descent method. Due to the asymmetry of Kullback-Leibler divergence, 
different types of projection error in pairwise similarities are weighted differently (Van der 

Maaten and Hinton, 2008a). If the value of /j ip between two objects in the original data is large, 

it is better to make sure that /j iq  is not zero. Otherwise the Kullback-Leibler divergence will be 

large and we need to pay a very large penalty for having two objects that are similar in the 

                                                           
5 The equations in this page and next page are taken from Van der Maaten and Hinton, 2008a (p2581-2584). 
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original data, but far apart in the map. However, it does not work the other way around. If two 

points are dissimilar, we do not pay a cost for putting them closer together since /j ip  outside 

is infinitesimal. Hence, SNE mainly preserves local similarity structure of the data.  
Although SNE displays a nice visualisation, the optimisation problem of the cost function and 
the crowding problem restrict its application in more fields. The cost function of t-SNE is 
different from SNE in two ways (Van der Maaten and Hinton, 2008a): 1) it changes the cost 
function of SNE into a symmetrised version, which makes the optimization of the cost function 
easier. 2) it applies a t-distribution instead of a Gaussian in the low-dimensional map to 
compute the similarity probabilities.  
The symmetric SNE 

Instead of using the conditional probabilities /j ip  and /j iq , the symmetric SNE uses the joint 

probabilities ijp   in the high-dimensional space and the joint probability ijq   in the low-

dimensional space, 

(P ) log
ij

ij

i i j ij

p
C KL Q p

q
= =∑ ∑∑ , 

/ /

2

j i i j

ij

p p
p

n

+
= . 

This type of SNE is called symmetric because of its properties ij jip p= and ij jiq q= . The 

gradient of the symmetric SNE is simpler than SNE 

4 (p q )(y )ij ij i j

ji

C
y

y

δ
δ

= − −∑  in symmetric SNE, 

/ / / /2 (p )(y )j i j i i j i j i j

ji

C
q p q y

y

δ
δ

= − + − −∑  in SNE. 

The crowding problem 

The crowding problem occurs when data is intrinsically high-dimensional but we try to model 
the local structure of this data in a low-dimensional map. For instance, we try to map high-
dimensional data whose manifold has ten intrinsic dimensions into a two-dimensional map. 
Dissimilar points in the original data have to be model too far apart in the map. In order to 
preserve as much as information in the original data, an attraction force is produced to get 
these too far away map points a bit closer together (Van der Maaten and Hinton, 2008a). 
Although these attractive forces are small, if there are thousands of points that are all trying to 
be closer, it will cause crowding problem in the centre.  
In t-SNE, it uses a student t-distribution with one degree of freedom, a heavy-tailed distribution, 
to solve this problem, 

2
1

2 1

(1 )

(1 )

i j

ij

k lk l

y y
q

y y

−

−
≠

+ −
=

+ −∑
. 

Because of the property of t-distribution, dissimilar objects in the original data are allowed to 
be modeled by a much larger distance in the map than in SNE. For example, the distance 
between two points in the data is 20 and the corresponding similarity probability is 0.1 and then 
to get the same density of 0.1, the distance is larger in the map. 
Whether DR techniques are efficient and robust will have a strong effect on the resulting 
embedding. The more stable the embedding of DR methods under variations are, the easier it 
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is to obtain reliable visual comprehension in datasets (Carcía-Fernández et al, 2013a). 
Therefore, we study the stability of dimensionality reduction under variations in parameters 
and data. This experiment is used as another evaluation of the performance of the DR methods. 
To find which parameters will have an effect on the robustness of t-SNE, we will learn from the 
algorithm of t-SNE.   
The cost function in t-SNE is optimised by a simple gradient descent procedure. This procedure 
can be sped up by introducing a momentum term (t)a and a learning rate η. The algorithm is 

shown in figure 3.  

Figure 3: Simple version of optimization of the cost function in t-SNE 

Source: Van der Maaten and Hinton, 2008a: p2587. 

In addition, the visualisation results can be improved by two means (Van der Maaten and 
Hinton, 2008a): 1) by early compression, which is to put the map points closer together at the 
beginning of optimization. When the distances between map points are small, clusters can go 
through other clusters easier in the iteration computation and hence it is good for exploring the 
structure of possible global organisations of the data. 2) by early ‘exaggeration’. In order to 

model the relatively large corresponding ijp , almost all of ijq  become larger. In consequence, 

clusters themselves in the map are formed closer and separate from other clusters, which 
creates more empty space in the map for clusters to more around in the iterations to find a 

better global visualisation. This problem can be solved by multiplying all of the ijp   by, for 

example the value 4, for the initial iterations. 
Figure 3 shows that each of parameters perplexity p, the number of iterations, the momentum 
term (t)a and the learning rate η can have an influence on the resulting embedding of t-SNE. 

In this study, we focus on studying the impact of perplexity and set the number of iterations, 
the momentum term (t)a and the learning rate η to a fixed number.  

3.2.2 Isomap 

Isomap is a DR method that is similar to multidimensional scaling analysis (MDS) in that it 
preserves pairwise distances between data points. However, instead of using Euclidean 
distance in MDS, Isomap applies curvilinear distance, i.e. the distance between data points 
over the manifold. In Isomap, researchers first construct a neighbourhood graph G over all 
data points by connecting each data point Xi with its k nearest neighbours, where the value of 
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k is defined by the users (Tenenbaum et al., 2000). Thereafter, the estimates of the curvilinear 
distances are computed as the shortest paths between all pairs of data points in the graph 
(Tenenbaum et al., 2000).  D-dimensional representations are constructed by performing the 
eigendecomposition of the pairwise curvilinear distance matrix.  

3.2.3 Local linear embedding (LLE) 

Similar to Isomap, LLE also constructs a graph G that represents the data points in a high-
dimensional dataset. However, compared to Isomap, LLE only focuses on local properties of 
the data. LLE assumes that the local properties of the manifold around data points fit a 
hyperplane in such a way each data point xi can be reconstructed as a linear combination wi 

(reconstruction weights) of its k nearest neighbours (Saul, 2001). Reconstruction weights are 
stable to translation, rotation and rescaling (Saul and Roweis, 2003). Because of that, the 
reconstruction weights that are found in the high-dimensional data also work in reconstructing 
yi from its neighbours in the low-dimensional space if the low-dimensional space preserves the 
local properties of the manifold (Van de Maaten et al., 2008b). Therefore, in order to find the 
low-dimensional data points yi that represent high-dimensional data points xi, we need to 
minimise the cost function  

2

1

(Y)
j

k

i ij i

i j

y w yφ
=

= −∑ ∑ subject to 
2

(k) 1y =  for k∀ 6. 

Roweis and Saul (2000) use the smallest d nonzero eigenvalues and their corresponding 
eigenvectors of the matrix (I-W)T(I-W) to obtain the d-dimensional data representation yi, where 
W consists of reconstruction weights and I is n × n identity matrix.   

3.2.4 Laplacian Eigenmaps (LE) 

LE is a non-linear technique that preserves local properties of the manifold in the low-
dimensional space. Similar to Isomap, LE also constructs an adjacency graph G that connects 

each data point ix with its k nearest neighbours in the high-dimensional space. The aim of LE 

is to find a low-dimensional space in which the k nearest neighbours of a data point are the 
same as in the original data, which is achieved by adding weights to the cost function (Belkin 

and Niyogi, 2002; Wang, 2011). If data points ix  and jx  in the graph are connected, the 

Gaussian kernel function is used to compute the weight of these two points (Belkin and Niyogi, 
2002), 

2

22 .

i jx x

ij
w e σ

− −

=  

A sparse matrix W is made up of weights between all these two data points. 

The cost function below is minimised to find the low-dimensional data representations iy, 
2

(Y) i j ij

ij

y y wφ = −∑
7. 

The data points that are close in the original space will obtain a high weight. Thus the 
corresponding low-dimensional data representations will have a higher contribution in the cost 
function.  
Assuming that the degree matrix M of W is a diagonal matrix and the entries of M are equal to 

                                                           
6 The equation is taken from Van de Maaten et al., 2008b (p8).  
7 The equation is taken from Van de Maaten et al., 2008b (p9). 
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the sum of rows of W, 
ii ijj
m w=∑ , and the graph Laplacian L of W is equal to M-W (Van de 

Maaten et al., 2008b), the cost function can be written as 
2

(Y) 2 T

i j ij

ij

y y w Y LYφ = − =∑ subject to 
T

nY MY I= 8. 

Hence, the question of finding the d-dimensional data representations is converted to look for 
the smallest d nonzero eigenvalues and corresponding eigenvectors of the graph Laplacian L. 

3.3 DBSCAN 

DBSCAN is a clustering algorithm that can detect clusters of arbitrary shape based on the 
density of points and handle the noise points effectively (Ester et al., 1996). The performance 
of DBSCAN is sensitive to the choice of the two parameters eps, which determines how far 
to search for neighbour points given a point, and MinPts, which defines a minimum number 
of points that should present in the neighbourhood of a given point to form a cluster (Karami 
and Johansson, 2014). Ester et al. (1996) proposed to use the sorted k-dist graph in which 
the k-nearest neighbour distances of each point are plotted in an ascending order to estimate 
the optimal value eps after fixing MinPts to a certain number. The optimal eps corresponds to 
a sharp change in the sorted k-dist graph. 

3.4 Intrinsic evaluation of word vectors 

Analogy tests measure syntactic and semantic relationships by simple algebraic operations on 
the word vectors (Mikolov et al., 2013a; Mikolov et al., 2013b). Figure 4 illustrates an example 
of analogy tests - countries-capitals test. A corpus of countries and capitals is converted into 
real valued vectors and these vectors are projected into a two-dimensional map, which is 
shown in figure 4. In Figure 4, we observe that neighbouring countries (Germany + France and 
Spain + Portugal) are closer than other countries and the semantic regularities between a 
country and its corresponding capital city show linear patterns, e.g. Pairs is to France as Madrid 
is to Spain. Mikolov et al. (2013c) propose a simple vector offset method to explain the 
algorithm of this vector operation. Given an analogy question with an unknown term d, a:b::c:d 
that d is similar to c in the same sense as b is similar to a. The best answer for the unknown 
term d is the word whose word representation maximizes the cosine similarity: 

( )
arg max

T

b a c i

i b a c i

x x x x
d

x x x x

− += =
− +

9. 

According to the vector offset method, the countries and capitals example can be explained in 
such a way that the vector “Madrid” vec(“Madrid”) is closer to the result of the vector 
computation vec(“Pairs”)-vec(“France”)+vec(“Spain”) than any other word vectors based on 
the cosine distance.  
There are two categories in analogies: syntactic and semantic regularities. Some examples of 
syntactic and semantic questions are shown in table 1.  

                                                           
8 The equation is taken from Van de Maaten et al., 2008b (p9). 
9 The equation is taken from Mikolov et al., 2013c (p748). 
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Table 1: Syntactic and semantic relationship test set 

Source: Mikolov et al, 2013a: p6. 

Figure 4: The regularities of vector space representations in a two-dimensional map 

Source: Miñarro-Giménez et al., 2015: p3.  
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4 Results  
In this chapter, we will first present the performance of the five DR methods on the 5000 
randomly-chosen-words dataset and the six ‘word lists’ filtered dataset in 5.1.2 and 5.1.3. Then, 
the study of the stability of methods is shown in 5.2. At the end, the results of analogy tests are 
presented in 5.3 

4.1 Dimensionality reduction methods 

To evaluate the performance of DR methods on the word2vec processed medical corpus, we 
have selected five DR methods in which there is one linear technique, PCA, and four 
nonlinear techniques, t-SNE, Isomap, LLE and LE.  
The settings of the cost function parameters we use in the study are listed in table 2.  

Table 2: Cost function parameter settings in the study 

Technique Parameters settings 

PCA None None 

t-SNE 
Perplexity (P): the effective number of 

neighbours 30 

Isomap 

k: number of nearest neighbours 12 LE 

LLE 

Source: the table is created based on the table in Carcía-Fernández (2013), p97.  

4.1.1 Description of the data 

The medical dataset includes 147,764 unstructured medical terms derived from Medscape, a 
website that contains web text crawled from Medscape articles. Machine learning researchers 
applied the word2vec continuous skip-gram model to train this dataset with seven window 
sizes, 1, 2, 4, 8, 16, 32, 64 and thus obtained seven datasets with a different window size 
where the meaning of each term is represented by a 50-dimension vector. In the 5000 
randomly-chosen-words dataset or six ‘word lists’ filtered dataset, class information is added 
to each term. However, the class information is not applied in the algorithm of DR methods, 
but only used in the colour selection for data points in projections, which provides us with a 
way to obtain information on how similar data points are arranged in the map.  

4.1.2 A 5000 randomly-chosen-words dataset 

There are 147,764 terms in our dataset. Obviously, if we visualize all terms at the same time, 
a lot of points in the plot will be overlapping and thus the plot will be hard to read. To make the 
plot easy to visually analyse, we firstly picked three categories of word lists (1. days of week; 
2. months of year; 3. several random English terms). Afterwards, we form a three-category 
target dataset by selecting the rows from the word embedding dataset whose names of the 
entries correspond to the words in the word lists. We choose 5000 terms randomly from the 
original dataset to form a 5000-term dataset in which we delete words from our word lists. At 
the end, we combine the three-category target dataset with 5000-term dataset which we will 
use in this study. Within the group that consists of months of year, there are two subgroups, 
one is words themselves like February and another is words with some ‘additions’ (prefix and 
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suffix) like Sep-Oct.  
Because of the limited space, we only present the results of five DR methods on the dataset 
with window size 1 in Figure 5-8 and the rest of the results from the other six different window-
size datasets are presented in the appendix A (figure 29-32). The performance of the five DR 
methods on the other six different window-size datasets are similar to that in the dataset with 
window size 1. Figure 5 and 7 show that the difference between the performance of PCA and 
Isomap is small since the most data points in the 2-dimensional maps are distributed along the 
x axis, but Isomap projection diverges on the left of the distribution. Moreover, the month of the 
year data points without ‘additions’ in PCA and Isomap graph (highlighted with a blue circle) 
tend to stay close and separate from other months of the year terms with ‘additions’. The data 
points that represent days of the week in the red circle stay close to the months of the year 
with ‘additions’. The t-SNE generates a number of clear clusters, as seen in figure 6. As 
opposed to PCA where days of the week are mixed with the months of the year with ‘additions’, 
the t-SNE plot separates days of the week from other points with text, even though the term 
Friday is not close to the terms from the same group. Compared to three other DR methods, 
the performance of LE and LLE is unsatisfactory since LE arranges the data points from the 
same groups in a line instead of clustering the data points and LE just projects most elements 
of the dataset in a single line segment. The explanation is shown in conclusion part.  
The results of t-SNE on seven datasets with a different window size in figure 9 reveal that data 
points that represent months of the year without ‘additions’ are always clustered together under 
the variation in window size. Moreover, the value of window size has an influence on the 
clustering information of the terms from days of the week. For instance, in window-size 1 plot, 
three terms, Monday, Sunday and Saturday cluster together and these are away from the term 
Friday while in window-size 8 plot, these four terms are scattered.  

Figure 5: PCA on the dataset with window size 1 

 
 
Note: We used four different colours to label 5000 randomly chosen terms, several random English 

terms, months of the year and days of the week. Yellow, green, blue and red dots represent the 5000 
randomly chosen terms, several random terms, months of the year and days of the week, respectively. 

After we put text on the data points belonging to several random terms, months of the year and days of 
the week, we found that there exist some clustering structures. Therefore, we used blue and red circles 
to mark the position of months of the year without ‘additions’ and days of the week.  
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Figure 6: T-SNE on the dataset with window size 1 

 

Figure 7: Isomap on the dataset with window size 1 

 

Figure 8: LE and LLE on the dataset with window size 1 

 
 

Note: LE and LLE plot are on the left and right side, respectively.  
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Figure 9: T-SNE on seven different window sized datasets 

Window size 1 Window size 2 

Window size 4 Window size 8

Window size 16

 

Window size 32

 
Window size 64

 

 

 
Although t-SNE for the 5000 randomly-chosen-words dataset generates a number of clear 
clusters in the projection, it does not offer clustering information according to the positions of 
the data points in the map. Therefore, we apply density-based spatial clustering of applications 

with noise (DBSCAN) method to the two-dimensional data produced by the t-SNE. This 
provides a way of evaluating the quality of the clusters generated by t-SNE. We set the value 
of MinPts to 10 and found the optimal value of eps which is 4.5 in the k-dist graph. The result 
of DBSCAN with MinPts 10 and eps 4.5 is shown in figure 10. DBSCAN discovers seven 
clusters on the t-SNE two-dimensional map. There are two big clusters, cluster 1 and 2, which 
together include almost 96% of the total terms. The two big clusters are surrounded by the 
remaining five clusters. The details of clusters are listed in table 3. From table 3, we observe 
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that every cluster includes terms with the similar structure or meaning with the notable 
exception of cluster 1 which contains the most terms. With regard to the position in figure 10, 
the DBSCN t-SNE map, cluster 1 and cluster 5 are closer to each other (both clusters contain 
the similar structure of terms, that is <newparagraph> + term, but in cluster 5 there is an extra 
period in front of the whole term.  

Figure 10: DBSCAN on t-SNE 2-dimensional map 

 

Table 3: The details of the DBSCAN clusters 

Cluster 
Number of 

terms 
Type or structure of terms Examples 

Cluster 
1 

630 

1. <newparagraph> + term 
2. Terms that represent 

months of the year with 
some additions (prefix 
and suffix) 

<newparagraph>Witt 
5555-June 
May/5555 

Cluster 
2 

4226 Terms from different fields 
biomechanics 

Friday 

Cluster 
3 

20 
Combinations of two capital 
letters 

MO 
WZ 

Cluster 
4 

15 Names of people 
Abbeele 
Erden 

Cluster 
5 

24 
Period + <newparagraph> + 
term 

.<newparagraph>Sandler 

.<newparagraph>Gordon 

Cluster 
6 

18 
Combinations of two capital 
letters + period 

AF. 
CB. 

Cluster 
7 

9 Names of syndrome 
Kallmann 
Aicardi 
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4.1.3 A six ‘word lists’ filtered dataset 

To check whether dimensionality reduction methods also work well on specific data, we 
apply the methods on the datasets filtered by six ‘word lists’:  

(1) 6035 of the most common English words derived online (http://www.insightin.com/esl/);  
(2) 201 country and continent names (https://www.countries-ofthe-world.com/all-
countries.html);  
(3) 490 medical abbreviations (basic medical terminology from U.S. Army medical department 
centre and school);  
(4) 186 nationalities (https://en.wikipedia.org/wiki/Lists_of_people_by_nationality); 
(5) 16456 the most common medical terms (excl. disease names) 
(http://www.medicinenet.com/list_of_common_medical_abbreviations_and_terminology/view
s.htm);  
(6) 4638 of the most common disease names 
(http://www.medicinenet.com/diseases_and_conditions/alpha_a.htm).  
The filtered dataset includes 7044 terms with vectors in which word lists 1-6 account for 48.2%, 
1.7%, 4.0%, 0.4%, 43.4%, and 2.3% of 7044 terms, respectively. 
Figure 11 shows the results of the DR methods in the six ‘word lists’ filtered dataset with 
window size 1. The results of five DR methods in other window-size datasets is similar to that 
in window-size 1 dataset, which is presented in figure 33 in the appendix A. In PCA plot of 
figure 11, the first principal component separates the groups that represent most common 
English words, the most common medical terms and medical abbreviations. However, if we 
colour all data points to black, it is hard to obtain clear group information. Compared to PCA, 
t-SNE plot shows some cluster patterns, which we also find in the 5000 random word 
experiment. In t-SNE plot, most country terms (orange dots) tend to stay close together and 
nationality terms (blue dots) are around the country terms. Some medical abbreviations (green 
dots) are clustered together. The rest of medical abbreviations and most disease name terms 
(yellow dots) are dispersed in the medical terms group (dark blue dots) and common English 
words group (red dots). We zoomed in the area where the most common English terms have 
an overlap with the medical terms. It is not surprising to find that the terms from the ‘most 
common English’ group are words that have been used a lot in medical field, like cells, 
transport, and metabolism. T-SNE also works well in other window-size datasets, which is 
shown in figure 12. Conversely, LLE produces a projection in which most data points are 
overlapping which renders them not useful. Almost all data points in LE are in a single line 
segment.  

Figure 11: DR methods on six ‘word lists’ filtered dataset with window size 1 
PCA 

 

t-SNE 

 
Isomap LE 



 

 

20 

 

  
LLE 

 

 

Note: we labelled data points based on the class information by colouring points that represent ‘common 

English words’, countries, medical abbreviations, nationalities, ‘common medical words’ and the ‘names 
of disease’ into red, orange, green, blue, dark blue and yellow, respectively.  

Figure 12: T-SNE on the six ‘word lists’ filtered datasets with a different window size 
Window size 1 

 

Window size 2

 

Window size 4

 

Window size 8

 
Window size 16

 

Window size 32
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Window size 64

 

 

 

4.2 Stability analysis of dimensionality reduction methods 

In this analysis, we evaluate the stability of the DR techniques with respect to the variations in 
the cost function parameters and data. Although the performance LE and LLE is unsatisfactory 
compared to other DR techniques, we want to check whether the variations of the cost function 
parameters and data will have an effect on the performance of LE and LLE. The analysis is 
carried out on the six-category filtered dataset. The settings of the techniques are listed in table 
4.  

Table 4: The settings of five dimensionality reduction methods 

Technique Parameters settings 

PCA None None 

t-SNE 
Perplexity (P): the effective number of 

neighbours 
5<P<50 

Isomap 

k: number of nearest neighbours 5<P<50 LE 

LLE 

Source: the table is created based on the table in Carcía-Fernández (2013), p97.  

4.2.1 Experimental setup 

We are conducting two experiments in the study. The details of the experiments are shown 
below:  

Experiment 1. This experiment is to study the changes of plots under the variation in the 
parameter, perplexity P or the number of nearest neighbours k, using the identical dataset 
(N=1000 terms). The values of P and k are 5, 10, 15, 20, 25, 35, and 45.   
Experiment 2. For this experiment, we will study the performance of the DR methods on the 
incrementally changing size of the datasets, starting with a dataset of 1000 terms to 1500, 
2000, 2500 terms.  
In order to improve the stability of the DR algorithms, we apply pre- and post-processing in 
convex and nonconvex techniques (Carcía-Fernández et al, 2013): 
1. For PCA, Isomap, LLE and LE, we use the post-processing method, Procrustes Analysis. 

Carcía-Fernández et al. (2013) propose to use Procrustes Analysis to align the shapes of 
projections to address this problem. Procrustes Analysis is a point-by-point shape alignment 
which aligns shapes to the baseline shape by re-scaling each shape to a uniform size, 
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translating each shape to its centroid and rotating each shape around the baseline shape 
until the sum of the squared distances between the corresponding points is minimised 
(Stegmann and Gomez, 2002; Dryden and Mardia,1998; Kendall, 1989). The projections 
after Procrustes Analysis help us evaluate the stability of the DR methods under the 
parameter and data variations efficiently and fast. In our study, we set the maps of the 
convex techniques with k equal to 5 for experiment 1 and data size equal to 2500 for 
experiment 

2. The nonconvex technique t-SNE initializes the algorithm randomly and data points 
presented in each iteration is also random. This property may impact in the stability of t-
SNE, which biases the study of the stability of t-SNE under the variations in perplexity and 
data. To address this issue, we apply a simple pre-processing method: we fix the random 
seed that produces initial points to N(0, 10-4I) thus controlling the randomness of the 
initialization of the algorithm.   

4.2.2 Results of the experiment 1 and 2 

Experiment 1 

The results are shown in figure 13-16. Figure13 shows that the performance of Isomap under 
the variation in k is stable. In figure14, compared to other projections with different perplexity, 
data points in the projection with perplexity 5 tend to stay closer, thus generating small clusters. 
Although the shapes of the t-SNE projections change under the variation in perplexity, data 
points that stay close in one projection still cluster together in another projection. Over the 
perplexity’s value of 5, the variation of perplexity does not bring substantial change on the 
quality of the embedding. It can be seen in figure 15 and 16 that the performance of LE and 
LLE is not improved considerably along with the change of k although data points in LLE are 
more distributed instead of in a single segment. In general, the performance of Isomap and t-
SNE is relatively stable in terms of the influence of cost function parameters. 
 
Figure 13: The performance of Isomap with k 5, 10, 15 and 25 

k=5 After procrustes analysis 

k=10 After procrustes analysis  
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k=15 After procrustes analysis  

k=25 After procrustes analysis  

 

Figure 14: The performance of t-SNE with perplexity 5, 15, 25 and 35 
P=5 P=15 

P=25 P=35 

 

Figure 15: The performance of LE with k 5, 10, 15 and 25 
k=5 

 

k=10 
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k=15 

 

k=25 

 

Figure 16: The performance of LLE with k 5, 10, 15 and 25 
k=5 

 

k=10 

 
k=15 

 

k=25 

 
 
Experiment 2 

The results in figure 17-21 show that the performance of PCA and Isomap with respect to the 
incrementally changing size of the datasets is stable based on the similar shapes of the maps. 
The performance of PCA is more stable than Isomap. It confirms what we observe in 
experiment 1 that although the shapes of the t-SNE two-dimensional data representations vary 
with the change of perplexity and data size, the clustering information stays almost the same. 
It is important to emphasize that the quality of LE and LLE embedding is not greatly improved 
under the data-size variation.  

Figure 17: The performance of PCA on 1000-, 1500-, 2000- and 2500-terms datasets 
d=1000 d=1500 
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d=2000 d=2500 

 

Figure 18: The performance of t-SNE on 1000-, 1500-, 2000- and 2500-terms datasets 
P=25 

d=1000 
P=35 

d=1000 

d=1500 d=1500 

d=2000 d=2000 

d=2500 d=2500 
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Figure 19: The performance of Isomap on 1000-, 1500-, 2000- and 2500-terms datasets 
k=5 

d=1000 
k=15 

d=1000 

d=1500 d=1500 

d=2000 d=2000 

d=2500 d=2500 

 

Figure 20: The performance of LE on 1000-, 1500-, 2000- and 2500-terms datasets 
k=5 

d=1000 
k=5 

d=1500 
k=5 

d=2000 
k=5 

d=2500 
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Figure 21: The performance of LLE on 1000-, 1500-, 2000- and 2500-terms datasets 
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4.2.3 The t-SNE clustering information analysis 

In the study of the stability of the DR techniques under the variations in the cost function 
parameters and data, we found that, although the shapes of t-SNE projections change as 
perplexity and data size change, the data points in the resulting embedding which are close 
still stay in the map with different perplexity or data size. In other words, the clustering 
information is stable. To explore the details of clustering information, we carry out the following 
experiment: we compute the distance of each element in the dataset travelled from one 
perplexity plot to another successive perplexity plot. For example, assuming that there are 
1000 terms, the distances of the 1000 terms are computed by calculating the Euclidean 
distance between the same terms travelled in perplexity5perplexity10 (P5P10), P10P15, 
P15P20, P20P25, P25P35, P35P45. We combine these distances together to form a 1000-
term distance dataset. These are then separated into the six groups and we obtained six 
distance datasets which only include the distance information of elements from the same group. 
The same measurement is applied for other different-sized datasets. Afterwards, we apply the 
summary statistics, violin plots and parallel coordinates to these datasets.   
 

Summary and descriptive statistics 

Firstly, we use the summary statistics to gain a basic understanding of the distance datasets. 
We show the descriptive statistics of 2500-term dataset in table 5. Table 5 shows that there is 
some uncertainty on the movements of data points when perplexity is too small since the 
standard deviation of P5P10 is always the largest. As perplexity increases, the standard 
deviations of the distances show a downtrend, which indicates that the movements of elements 
belonging to the same group become stable.  
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Table 5: Summary statistics of 2500-term distance dataset 

  2500 terms Group 1 Group 2 Group 3 Group 4 Group 5 Group 6 

 Mean StD Mean StD Mean StD Mean StD Mean StD Mean StD Mean StD 

P5P10 61.4 45.7 65.5 49.3 39.6 25.1 60.0 27.5 36.4 40.3 58.6 42.9 50.9 38.0 

P10P15 10.7 10.3 11.6 13.4 10.7 7.0 13.3 9.1 6.3 3.2 9.6 5.1 8.9 3.3 

P15P20 8.1 8.5 7.0 7.8 6.7 1.5 15.3 13.2 9.1 7.2 8.5 7.9 13.1 15.6 

P20P25 15.4 7.8 16.6 9.2 10.8 2.7 13.2 6.6 9.5 4.7 14.6 5.9 10.0 5.8 

P25P35 28.6 12.2 30.6 12.3 23.5 4.9 32.1 15.3 17.4 7.0 26.5 11.4 26.6 14.9 

P35P45 5.9 5.3 6.5 6.3 3.6 0.5 8.1 5.6 3.3 1.5 5.1 3.7 5.1 3.3 

 
 

Violin plots 
Based on the previous experiment’s finding that clustering patterns are stable, we expect that 
the distances of the elements belonging to the same class travelled between two projections 
with different perplexity are similar, which indicates that the distances are distributed around a 
certain value. Violin plots, a combination of a boxplot and a kernel density plot, are one of the 
most popular tools in exploring underlying distribution of data. We selected violin plots to 
evaluate the distribution of the distances in the dataset. Because of the limited space, we only 
presented the violin plot of 2500-term dataset in figure 22 and the rest violin plots from other 
datasets are shown in the appendix A (figure 39).   
The centre white dot of the plot represents the median. The top and the bottom of the plot show 
the maximum value and the minimum value, respectively. The black vertical lines are the 
whiskers which represent the first and third quartile. The width of the plot is proportional to the 
estimated density. It confirms what we observed in the summary statistics part, i.e. that the 
standard deviation of P5P10 is always the largest. In addition, we also find that the distributions 
of the distances in group 1 and group 5 plots (the number of elements in group 1 and group 5 
accounts for 49.2% and 42.8% of the total number, 2500 terms, respectively) are similar to the 
distributions in the 2500-term plot. Compared to the 2500-term plot, the travelled distances in 
group 2 or group 4 (except P5P10) are similar since the distributions are flat. Although the 
distributions in group 5 and 6 are not flat, there exists density difference in the distributions. 
For example, some distributions become wider at the middle. This means that most distances 
exhibit a similar trend. In general, distances in small groups (group 2, 3, 4 and 6) tend to be 
similar.   

Figure 22: Violin plots of the 2500-term dataset 
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Parallel Coordinates 

Parallel coordinates are an interactive visualization technique that reveals meaningful patterns 
of multivariate datasets. We expect that the travelled distances of elements from the same 
group follow the same trend in a parallel coordinates graph. Although it is difficult to dig into 
the details of each word in a parallel coordinates graph, it offers us a way to evaluate the trend 
of the distances. Because of space limitations, we only represented parallel coordinates of the 
2500-term dataset in figure 23.  
Figure lines are used to encode the changes of term distances along the variations in perplexity. 
Six vertical axes are laid out in parallel from left to right along the x-axis and each vertical axis 
represents a perplexity comparison such as P5P10. The variable names appear on the bottom 
of x-axis. Within a single line in a parallel coordinates display, a series of distance values 
belonging to a same term are connected together, in which each value is associated with a 
different perplexity comparison. The slopes’ up and down movement of the lines display a 
distance trend along perplexity from one value to another. In the graphs of group 2 and 4, 
looking at the axes from the left to the right one can see that the movements of terms under 
the variations in perplexity have a similar trend since the lines are overlapping. The graphs of 
group 3 and 6 also reveal that most of the lines starting from P10P15 to P35P45 are 
overlapping at the beginning but separate at P25P35 and get closer again at P35P45. Parallel 
coordinates also confirm that distances in small groups (group 2, 3, 4 and 6) tend to be similar.  

Figure 23: Parallel coordinates of the 2500-term dataset 

Group 1 

 

Group2

 

Group 3 

Group 4 Group 5 

 

Group 6

 2500-term dataset  

4.3 Results of intrinsic word vector evaluation 

To measure the quality of the word vectors, we choose two syntactic tests and one semantic 
test. The details of the tests are shown in table 6. Before conducting these tests on the word 
vectors of medical terms, we projected the 50-dimensional skip-gram processed vectors of 
seven different window-size datasets each to a two-dimensional map by using t-SNE with 
perplexity 30.  
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Table 6: Examples of the syntactic and semantic tests 

Type of relationship Word Pair 1 Word Pair 2 

Past tense admit admitted provide provided 

Plural nouns disease diseases doctor doctors 

Organ and related 
diseases 

skin acne heart  stroke 

 

4.3.1 Syntactic test 

Past tense 

Firstly, we evaluate whether the model captures the tense pattern. We pick 27 pairs of the 
verbs with present and past tense from the skip-gram processed medical dataset. The results 
of past tense test are shown in figure 24. Blue and red dots represent present and past tense 
verbs, respectively. In window size 1 plot of figure 24, the base verbs are located at the 
relatively low part of the plot. The line segments from base verbs to past tense verbs are 
pointing upwards. In window size 2 of figure24, the base verbs are located at the right part of 
the plot. The line segments from base verbs to past tense verbs are pointing left. Compared to 
window size 1, the corresponding present and past tense verbs (for instance, provide and 

provided) in other window-size plots become closer. To confirm the result in the figure 24, we 
use “the relative distance” which is computed by dividing Euclidean distance between the 
selected verb with present and past tense by the mean of Euclidean distances between the 
particular verb and all other verbs10. We find that compared to window size 1, the median of 
“the relative distance” decreases in figure 25, this shows that the corresponding present and 
past tense verbs in other window sizes get closer vis-à-vis window size 1. Figure 26 shows the 
details of the comparison of other window sizes and window size 1 in “the relative distance”. 
Most points are below diagonal line which confirms that “the relative distance” in other window 
sizes relative to window size 1 decreases. Especially, the magnitude of the decrease of “the 
relative distance” of verbs in window size 32 is highest. In fact, in this case 24 out of 27 of “the 
relative distance” of verbs decrease- this can be mathematically seen in more detail in table 8 
in the appendix A. Although the results show that the corresponding present and past base 
verbs stay close, it does not clearly depict the special pattern found in some studies that word 
vectors go in a similar direction and sometimes even the length of the vectors are similar.   

Figure 24: Past tense test on seven different window sized datasets 

Window size 1 Window size 2 

                                                           
10 All other verbs: contain both past and present tense 
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Window size 4 Window size 8 

Window size 16 Window size 32 

Window size 64  

 

Figure 25: The median of relative distance by window size 
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Figure 26: The scatter plots of relative distance by window size 

  

  

  
Plural nouns 

Secondly, we evaluate whether the model identifies singular and plural pattern. Figure 27 
depicts the results of our analysis. Blue and red dots are singular nouns plural form of nouns, 
respectively. Instead of all plural nouns or singular nouns group together, singular and plural 
nouns with the same meaning are situated close to each other. After applying the same 
operation of “the relative distance” in Plural nouns test, we find that compared to window size 
1, the magnitude of the decrease of “the relative distance” of nouns in window size 16 is higher 
than other window sizes. Specifically, for 26 out of 38 the “the relative distance” decrease, 
which you can find in table 7. It means that in term of clustering structure of the corresponding 
nouns in singular and plural form, window size 16 performs the best. In addition, we also 
observe that nouns that represent a person are staying closer.  
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Figure 27: Plural nouns test on seven different window sized datasets 

Window size 1 Window size 2 

Window size 4 Window size 8 

Window size 16 Window size 32 

Window size 64  

 

Table 7: The relative distance test for plural words 

nouns w2 vs w1 w4 vs w1 w8 vs w1 w16 vs w1 w32 vs w1 w64 vs w1 

bone-bones -0.13 -0.33 -0.12 -0.37 0.12 -0.41 

cell-cells 0.01 0.01 0.06 0.05 0.63 0.03 

child-children -0.11 -0.12 -0.09 -0.04 -0.10 -0.20 

clinician-clinicians 1.62 0.51 1.85 0.55 1.22 0.53 

discipline-disciplines -0.02 0.00 0.17 0.20 0.02 -0.04 

disease-diseases 0.32 0.45 0.91 -0.03 -0.01 -0.05 

disorder-disorders 0.02 0.02 0.09 0.04 0.03 0.03 

doctor-doctors -0.01 -0.02 -0.04 -0.02 -0.05 -0.03 

factor-factors -0.07 -0.05 -0.04 -0.07 -0.05 0.38 
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gene-genes -0.06 -0.05 -0.04 -0.06 -0.05 -0.05 

head-heads -0.32 0.37 0.15 -0.07 0.41 -0.31 

heart-hearts 0.04 -0.07 1.16 -0.05 -0.12 -0.07 

infant-infants -0.43 -0.41 -0.43 -0.44 -0.44 -0.43 

infection-infections 0.02 0.02 0.90 0.02 0.04 0.04 

injury-injuries -0.01 -0.04 -0.02 -0.05 0.00 0.01 

instruction-instructions 1.35 -0.40 1.24 -0.45 0.44 1.01 

lesion-lesions -0.02 0.01 0.00 -0.01 0.01 -0.01 

man-men -0.08 0.19 0.18 -0.06 -0.15 0.14 

membrane-membranes -0.04 -0.03 -0.02 0.05 -0.03 -0.01 

muscle-muscles 0.00 0.02 0.01 0.00 0.02 -0.01 

nerve-nerves 0.00 0.00 0.01 -0.01 0.19 0.00 

nuclei-nucleus 0.02 -0.02 -0.01 0.31 -0.02 -0.01 

nurse-nurses -0.03 -0.18 -0.18 -0.17 -0.18 -0.19 

organ-organs 0.02 0.98 0.21 -0.02 -0.04 -0.03 

pain-pains -0.07 -0.10 -0.08 -0.13 -0.07 -0.07 

patient-patients 0.14 0.31 0.37 0.29 0.23 0.31 

rate-rates -0.01 0.01 0.00 0.04 0.01 0.04 

study-studies -0.33 -0.30 -0.31 -0.31 -0.33 -0.33 

surgeon-surgeons 0.26 0.35 0.40 -0.03 0.00 -0.01 

symptom-symptoms 0.01 -0.01 0.01 -0.05 0.02 0.00 

syndrome-syndromes 0.02 -0.01 0.08 0.13 0.10 0.01 

test-tests -0.01 -0.03 -0.04 -0.04 -0.05 -0.04 

tissue-tissues 0.01 0.01 0.00 0.00 -0.03 -0.01 

treatment-treatments -0.04 -0.03 -0.02 -0.07 -0.02 -0.05 

tumor-tumors -0.05 0.00 -0.03 0.00 0.02 -0.03 

vein-veins 0.01 0.00 0.01 0.58 0.03 0.00 

version-versions -0.45 0.16 -0.49 -0.50 0.77 -0.18 

woman-women 0.01 0.30 0.39 0.06 0.18 0.12 

the number of decreased 
"the relative distance" 

20 19 19 26 17 25 

Note: w1, w2, w4, w8, w16, w32, w64 correspond to window size 1,2,4,8,16,32,64, respectively. The 

values are computed by subtracting “the relative distance” of window size 1 from “the relative distance” 
of the listed window sizes. We highlighted the negative values which is obtained when compared to 
window size 1, i.e. “the relative distance” of the pair of nouns dose not decrease to this particular window-
size for this element.  

4.3.2 Semantic test 

Organ and related diseases 

Thirdly, we check whether the model identifies a clear relationship between disease and the 
related organ. In the plots of window size 1 and 2 in figure 28, the line segments are 
overlapping, but you can still find that most diseases stay close to each other. In all plots, the 
names of cancer are close. As window size increases, diseases related to the same organ 
become closer but more apart from other diseases.  
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Figure 28: Organ and related diseases test on seven different window sized datasets 
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5 Conclusion 
Nowadays, as the size and complexity of unstructured medical reports is constantly increasing, 
a large amount of valuable medical information is buried in these reports which may have 
significant applications in drug development (ACCUMULATE, 2016). In order to extract crucial 
medical information from various medical texts, researchers have proposed to use natural 
language processing. It helps to find an appropriate model that embeds terms into dense, real 
valued vectors that capture semantic and syntactic properties of the terms (Turian et al., 2010). 
However, word vectors produced by natural language techniques are always high-
dimensional. Therefore, it is necessary to find an appropriate dimensionality reduction method 
to transform high-dimensional datasets into a useful two- or three-dimensional space thus 
providing a way of visualizing the datasets with the naked eye. In this study, we introduce five 
dimensionality reduction methods to the skip-gram processed medical dataset and compare 
the performance of these DR methods.  

Although t-SNE generates a number of clear clusters in the projection, it does not offer 
clustering information according to the positions of the data points in the map. Therefore, we 
need to find a proper clustering technique for our study to obtain details on the clusters which 
enables us to estimate the quality of clusters. With the application of clustering techniques to 
large spatial datasets becoming increasingly common, researchers pay more attention to the 
clustering techniques that combine two requirements (Ester et al., 1996): 1) determination of 
input parameters for a specific database with less domain knowledge; 2) discovery of clusters 
of arbitrary shapes. Although there are a variety of clustering techniques, few techniques can 
combine the two requirements at the same time. For instance, partitioning algorithms like k-
means have difficulty in dealing with the shapes of clusters that are non-spherical, while 
hierarchical algorithms do not have a clear criterion to find an appropriate termination 
parameter (Tan et al., 2006). DBSCAN is a clustering technique which satisfies both 
requirements. In consideration of arbitrarily-shaped clusters in the t-SNE projection, we decide 
to use DBSCAN to the t-SNE two-dimensional map to explore the details of the clusters. The 
results of DBSCAN show that data points in the same group have either similar structure or 
similar meaning, which confirms that the clusters generated by t-SNE are meaningful. One of 
major weaknesses of the DBSCAN is its assumption that the distribution of the points within 
each cluster is uniform (Trikha and Vijendra, 2013). Due to this assumption, DBSCAN might 
ignore some meaningful clusters in our t-SNE map.  Fang et al. (2014) and Elbatta and Ashour 
(2013) improve the DBSCAN algorithm with respect to the uniform density assumption by 
introducing several values of parameter Eps, which can be used in future research.   

Although Isomap, LLE and LE perform dimensionality reduction by attempting to preserve 
pairwise geodesic distances over a manifold while PCA tends to retain pairwise Euclidean 
distances, there is the common characteristic among them that the low-dimensional 
representations yi are obtained by performing an eigendecomposition of a pairwise Euclidean 
or geodesic distance matrix (Van der Maaten et al., 2008b). Because of the algorithm, 
indeterminacies will be brought to representations, thus causing irrelevant geometric 
transformations like mirroring, rotation and translation of the projections (Carcía-Fernández et 
al., 2013). We find that these intrinsic geometric transformations slow down the comparison of 
the geometric variations of the projections. In the study, we set the shapes of the convex 
techniques with k equal to 5 and data size equal to 2500 as the baseline shape and considered 
the geometric variations of projections after Procrustes Analysis - these variations are caused 
by parameter and data change. In our study, we find that the projections after Procrustes 
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Analysis help us evaluate the stability of the DR methods under the parameter and data 
variations efficiently and fast. 

In our study, t-SNE outperforms PCA, which can be explained by the PCA property of finding 
linear representations of the original data. Although t-SNE and Isomap are sharing many 
advantages as a nonlinear technique, our results reveal that the performance of Isomap is 
inferior to t-SNE. We think that it is partly due to the sensitivity of Isomap to short-circuiting and 
the focus of the Isomap on retaining large geodesic distance (Tenenbaum et al., 2000; Van 
der Maaten et al., 2008b). The second reason is confirmed by the similar projections of Isomap 
and PCA in the study.  

In our study, LE and LLE do not yield satisfactory performance on transforming the high-
dimensional data to a useful two-dimensional map. Potentially this may be due to three 
reasons: Firstly, based on the work of Van der Maaten et al. (2008b), we can surmise that 
since LE and LLE use a simple covariance constraint to avoid the trivial solution, that is all data 
points collapsed onto a single point. Some undesired embeddings can easily meet the 
constraint. For instance, most data points are embedded in a single line segment and a few 
points are scattered, which we find in our study. Secondly, LE and LLE need to find the smallest 
eigenvalues to obtain embedding coordinates Y. In practice, it is difficult to identify the smallest 
eigenvalues because of the extremely small values of these eigenvalues. Third, the 
assumption of LLE that the local structures of the manifold are linear requires the manifold to 
be smooth, which may be not satisfied in our dataset.   

Overall, t-SNE works the best for our analysis in terms of the cluster structure and the stability 
performance.  

In our analogy test study, the t-SNE two-dimensional projections reveal that similar words are 
close to each other and the clustering patterns change under the window-size variation. 
However, word vectors do not clearly present the syntactic and semantic relationships between 
two words in these three analogy tests. In this relationship, word vectors go in a similar 
direction and sometimes even the length of the vectors are similar.  This may be due to the 
following reasons:  
1. The size of our training data (147,764 words) is small. Word2vec requires a large size of 
training data to obtain meaningful word vectors. Mikolov et al. (2013a; 2013b) use a dataset 
with about one million words and a dataset with about 33 billion words for the single-word and 
the phrase analogy task, respectively. Because the medical knowledge is complex and medical 
text is non-well-formed, researchers also apply word2vec to a large amount of medical corpora 
(Miñarro-Giménez et al., 2015; Muneeb et al., 2015; Choi et al., 2016). Miñarro-Giménez et al. 
(2015) obtained an accuracy of 43.9% that captures the may_treat relationship based on the 
corpus with about 234 million words.  
2. Our training data is unprocessed. Due to the fact that word2vec does not perform term 
normalisation before word embedding, the words with the same meaning but different structure 
(e.g. ‘disease’ and ‘disease.’) may be treated as different words, thus influencing the quality of 
word vectors. Miñarro-Giménez et al. (2015) confirms that the pre-processing on the original 
data, for instance removing all punctuation signs and transforming all words to lower-case, 
increases the quality of word vectors.  
3. The dimensionality of word vectors (50-dimensional vectors) may not be big enough. Vector 
dimensionality has a positive impact in the accuracy of word vectors in analogy tests (Miñarro-
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Giménez et al., 2015; Mikolov et al., 2013a). In terms of unstructured form and complexity 
medical knowledge, a higher word vector may work better for our medical dataset  

In conclusion, our study demonstrates that in terms of clustering structure and the stability of 
the technique under the parameters and data variations, t-SNE performs best on the skip-gram 
processed medical dataset compared to other four DR techniques. Although the analogy tests 
in the study do not show syntactic and semantic similarity, the results of this exploratory 
experiment can be used as initial knowledge for the more in-depth studies on word2vec in the 
medical field. There are a variety of semantic and syntactic questions that have been created. 
Because of time limitation, there are still some interesting analogy tests that we do not apply, 
which can be studies in the future. Although we know that the accuracy of word vectors 
increases after pre-process, we do not have the right to access machine learning in medical 
dataset. In the future work, we can pre-process medical text (e.g. removing all punctuation 
signs and transforming all words to lower-case) before training the data.  
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Appendix A 
1. A 5000 randomly-chosen-words dataset 
Figure 29: PCA on 5000 randomly chosen-words datasets with a different window size 

Window size 2 Window size 4 Window size 8 

Window size 16 Window size 32 Window size 64 

 
Figure 30: Isomap on 5000 randomly chosen-words datasets with a different window size  

Window size 2 Window size 4 Window size 8 

Window size 16 Window size 32 Window size 64 

 
Figure 31: LE on 5000 randomly chosen-words datasets with a different window size  

Window size 2 Window size 4 Window size 8 

Window size 16 Window size 32 Window size 64 
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Figure 32: LLE on 5000 randomly chosen-words datasets with a different window size 

Window size 2 Window size 4 Window size 8 

Window size 16 Window size 32 Window size 64 

 
2. A six ‘word lists’ filtered dataset 
Figure 33: PCA on the six ‘word lists’ filtered dataset with a different window size  

Window size 2 Window size 4 Window size 8 

Window size 16 Window size 32 Window size 64 

 
3. The stability of the DR methods 
Figure 34: t-SNE on 1000-term dataset 

P=10 P=20 P=45 

 
Figure 35: t-SNE on 2500-term dataset 
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P=20 P=45  

 
Figure 36: Isomap on 1000-term dataset 

P=20 P=35 P=45 

 

Figure 37: LE on 1000-term dataset 

P=20 P=35 P=45 

 
Figure 38: LLE on 1000-term dataset 

P=20 P=35 P=45 

 
 

Figure 39: Violin plots in 1000-, 1500- and 2000-term dataset 

d=1000 
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d=1500 

d=2000 

 
Table 8: The relative distance test in Past tense 

Verbs w2 vs w1 
w4 vs 

w1 w8 vs w1 w16 vs w1 w32 vs w1 w64 vs w1 

admit - admitted 0.26 -0.73 -0.85 -0.92 -1.02 -0.03 

advocate - advocated -0.35 -0.38 -0.35 0.83 -0.33 0.75 

aid - aided -0.37 -0.94 -0.95 -0.77 -0.90 -0.93 

assess - assessed -0.48 -1.21 -1.43 -1.31 -1.26 -1.28 

assign - assigned -0.28 0.26 -0.32 0.97 0.52 0.35 

assist - assisted 0.24 -0.02 0.29 -0.37 -0.68 -0.45 

care - cared -0.50 -0.08 -0.33 -0.58 -0.40 -0.63 

charge - charged -0.03 -0.05 -0.06 -0.07 -0.10 -0.10 

counsel - counseled -1.06 -1.05 -1.04 -1.08 -1.12 -1.12 

cure - cured -1.09 0.18 -1.12 -1.13 -1.17 -1.16 

diagnose - diagnosed -0.02 -0.93 -0.44 -1.14 -1.43 -0.95 

evaluate - evaluated -0.52 -1.08 -1.01 -1.17 -1.20 -1.05 

heal - healed -0.94 -0.96 -0.97 -0.96 -0.97 -0.97 

help - helped -0.52 0.34 -0.27 -0.42 0.05 0.08 

influence - influenced -0.73 -0.75 -0.73 -0.77 -0.78 -0.80 

monitor - monitored -0.59 -0.93 -1.51 -0.66 -1.30 -1.02 

practice - practiced 0.10 -0.04 -0.04 0.18 -0.11 0.44 

prevent - prevented -0.28 -0.21 0.07 -0.91 -0.93 -0.96 

proceed - proceeded -0.01 -0.01 0.34 0.09 0.28 0.55 

provide - provided -1.09 -1.15 -1.23 -1.24 -0.22 -0.09 

qualify - qualified 0.05 -0.02 0.18 -0.01 -0.02 0.00 

refer - referred 0.66 -0.01 0.75 0.97 -0.02 -0.05 
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regulate - regulated -0.29 -0.34 -0.35 -0.35 -0.34 -0.36 

repair - repaired -0.03 -0.06 -0.06 -0.07 -0.06 -0.07 

restrict - restrict -0.24 -0.27 -0.23 0.18 -0.23 0.23 

support - supported -0.10 0.04 0.29 -0.51 -0.94 -0.25 

treat - treated -0.02 0.10 -0.05 -0.69 -1.16 -0.51 

the number of decreased 
"the relative distance" 22.00 22.00 21.00 21.00 24.00 21.00 

 

Appendix B 
The matlab codes of PCA, t-SNE, Isomap, LE and LLE are based on 

dimension reduction toolbox provided by Laurens van der Maaten, 

available from https://lvdmaaten.github.io/drtoolbox/. Because of 

space limitation, we will only represent one example of the similar 

codes. For example, we will only show the codes for the window size 1 

dataset since the codes for the other window-sized datasets are the 

same. ‘%’ and ‘ #’ represent matlab and R codes, respectively.  

1. Dimensionality reduction methods  
1.1. Data selection 
# read the original data  
data1 <- read.delim("C:/Users/Administrator/Desktop/thesis/pca and t-
SNE comparision/process original data/d50 w1txt.txt", header=F) 
# select 5000 terms from the data 
set.seed(123) 
sub1 <- data1[sample(147764, 5000),] 
# select 3-category word list 
sub11 <- 
data1[c(3,4,5,6,12,15,16,19,20,21,22,1547,1646,2967,3268,3295,3300,3
410,3705,3852, 

                 
3895,3918,15974,24872,41878,47810,49997,53128,53437,65256,69793,
71606,75880, 
                   
77808,80507,87910,87983,88050,89032,89948,94732,98688,99915,1040
11,105549, 
                   
107366,107871,108043,108921,112728,115111,118886,125276,127705,1
35290,140922),] 

# combine 5000 with sub11 
sub12 <- rbind(sub1, sub11) 
sub22 <- sub12[!duplicated(sub12),] 
# export 5000 randomly chosen-words data 
library(xlsx) 
write.xlsx(sub22, "c:/data5001.xlsx") 

 
# six ‘word lists’ filtered dataset 
data1 <- read.delim(choose.files(), header=F) # the original window 
size 1 dataset 
data2 <- read.delim(choose.files(), header=F) # 6000 common words 
data3 <- read.delim(choose.files(), header=F) # countries and 
continents 
data4 <- read.delim(choose.files(), header=F) # medical abbreviation 
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data5 <- read.delim(choose.files(), header=F) # people by countries 
data6 <- read.delim(choose.files(), header=F) # medical  
data7 <- read.delim(choose.files(), header=F) # disease 
df1 <- data1[data1$V1 %in% data2$V1 & data1$V1 %in% data3$V1& data1$V1 
%in% data4$V1& data1$V1 %in% data5$V1& data1$V1 %in% data6$V1& 
data1$V1 %in% data7$V1,] 
df1 <- df1[!duplicated(df1),] 
write.table(df1, file="df1.txt", sep=" ", row.names = F) 
 
1.2. 5000 randomly-chosen-words and six ‘word lists’ dataset 
a = matrix_5001; 
b = matrix_5001name; 
no_dims = 2; 
% PCA 
[mappedXpca, mappingpca] = pca(a, no_dims);  
% Isomap 
k=12; 
[mappedXi12, mappingi12] = isomap(a, no_dims, k); 
% LE 
eig_impl = 'Matlab'; 
sigma = 1; 
k=12; 
[mappedXl12, mappingl12] = laplacian_eigen(a, no_dims, k, sigma, 
eig_impl); 
% LLE 
k=12; 
mappedXlle12 = lle(a, no_dims, k, eig_impl); 
% tsne 
% perplexity = 30; 
perplexity = 30; 
initial_dims = 50; 
mappedX30=tsne(a, [], no_dims, initial_dims, perplexity); 
 
% PCA plot in 5000 randomly chosen-words dataset 
dpg1 = mappedXpca(mappedXpca(:,3)==1, :); 
dpg2 = mappedXpca(mappedXpca(:,3)==2, :); 
dpg3 = mappedXpca(mappedXpca(:,3)==3, :); 
dpg4 = mappedXpca(mappedXpca(:,3)==4, :); 
figure(1); 
scatter(dpg1(:,1), dpg1(:,2), 15, 'MarkerEdgeColor',[255 255 
51]./255, 'MarkerFaceColor', [255 255 51]./255);hold on 
scatter(dpg2(:,1), dpg2(:,2), 15, 'MarkerEdgeColor',[0 158 115]./255, 
'MarkerFaceColor', [0 158 115]./255); 
scatter(dpg3(:,1), dpg3(:,2), 15, 'MarkerEdgeColor',[0 114 178]./255, 
'MarkerFaceColor', [0 114 178]./255); 
scatter(dpg4(:,1), dpg4(:,2), 15, 'MarkerEdgeColor',[213 94 0]./255, 
'MarkerFaceColor',[213 94 0]./255); 
legend({'5000 randomly chosen terms', 'several random terms', 'months 
of the year', 'days of the week'}, 'FontSize',8); 
set(gca,'Color',[0.8 0.8 0.8]); 
set(gca,'YTick',[]); 
set(gca,'XTick',[]); 
 
# the optimal value in DBSCAN 
dev.new() 
kNNdist(d5001, k=10, search="kd") 
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kNNdistplot(d5001, k=10) 
% DBSCAN plot 
figure(1); 
epsilon=10; 
MinPts=4.5; 
IDX1=DBSCAN(mappedX30,epsilon,MinPts); 
PlotClusterinResult(mappedX30, IDX1); 
 
1.3 The stability of dimensionality reduction methods 

% PCA 
no_dims = 2; 
[mappedXpca, mappingpca] = pca(matrix_1000, no_dims); 
% Isomap 
mappedXi7 = zeros(1000, 14); 
a=1; 
b=2; 
for i=5:5:45; 
[mappedXi, mappingi] = isomap(matrix_1000, no_dims, i); 
mappedXi7(:, a:b) = mappedXi; 
a = a+2; 
b = b+2; 
end  
% LE 
eig_impl = 'Matlab'; 
sigma = 1; 
a=1; 
b=2; 
mappedXl7 = zeros(1000, 14); 
for i=5:5:45; 
[mappedXl, mappingl] = laplacian_eigen(matrix_1000, no_dims, i, sigma, 
eig_impl); 
mappedXl7(:, a:b) = mappedXl; 
a = a+2; 
b = b+2; 
end 
% LLE 
a=1; 
b=2; 
mappedXlle7 = zeros(1000, 14); 
for i=5:5:45; 
[mappedXlle, mappinglle] = lle(matrix_1000, no_dims, i, eig_impl); 
mappedXlle7(:, a:b) = mappedXlle; 
a = a+2; 
b = b+2; 
end 
% tsne 
initial_dims = 50; 
a=1; 
b=2; 
mappedX7 = zeros(1000, 14); 
for p=5:5:45; 
[mappedX7, mapping7] = tsne(matrix_1000, [], no_dims, initial_dims, 
p); 
mappedX7(:, a:b) = mappedX7; 
a = a+2; 
b = b+2; 
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end 
% Procrustes analysis of isomap on 1000-term dataset with k 5 and 10 
X1 = mappedXil05(1:1000,1:2); 
X2 = mappedXil010(:,1:2); 
[d1,Z1,tr1] = procrustes(X1,X2); 
 
# Clustering information analysis in t-SNE 
# d1000 
data1000 <- 
read.delim("C:/Users/Administrator/Desktop/d1000distancetxt.txt", 
header=F) 
# summary 
colMeans(data1000[,-1]) 
sapply(data1000[,-1], sd) 
# Violin plots 
library(vioplot) 
dev.new() 
x1 <- data1000$V2 
x2 <- data1000$V3 
x3 <- data1000$V4 
x4 <- data1000$V5 
x5 <- data1000$V6 
x6 <- data1000$V7 
vioplot(x1, x2, x3, x4, x5, x6, 
names=c("P5P10","P10P15","P15P20","P20P25","P25P35","P35P45"), 
col="gold", ylim =c(0,120)) 
title("Group 1 in 1000-term dataset:distances under variations in 
perplexity") 
mtext("Variantions in perplexity", side = 1, line = 3, cex = 1, font 
= 4) 
mtext("Distance", side = 2, line = 3, cex = 1, font = 4) 
 
parallel coordinates  
labels = {'P5P10','P10P15','P15P20','P20P25','P25P35','P35P45'}; 
figure(1); 
parallelcoords(d1000g1,'Group',d1000g1_label,'Labels',labels); 
grid on; 
 
1.4 Word vector evaluation  

Here we present codes for nouns test since codes for other test are 
similar.  
% calculate tsne on seven datasets 
no_dims=2; 
initial_dims=50; 
perplexity=30; 
mappedXn_d1 = tsne(nvector_d1, [], no_dims, initial_dims, perplexity); 
mappedXn_d2 = tsne(nvector_d2, [], no_dims, initial_dims, perplexity); 
mappedXn_d3 = tsne(nvector_d3, [], no_dims, initial_dims, perplexity); 
mappedXn_d4 = tsne(nvector_d4, [], no_dims, initial_dims, perplexity); 
mappedXn_d5 = tsne(nvector_d5, [], no_dims, initial_dims, perplexity); 
mappedXn_d6 = tsne(nvector_d6, [], no_dims, initial_dims, perplexity); 
mappedXn_d7 = tsne(nvector_d7, [], no_dims, initial_dims, perplexity); 
% plot window size 1 dataset 
figure(1); 
gscatter(mappedXn_d1(:,1), mappedXn_d1(:,2), nvector_d1label, 'br'); 
text(mappedXn_d1(:,1), mappedXn_d1(:,2), nvector_d1name); 
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legend({'Singular nouns', 'Plural nouns'}, 
'FontSize',10,'FontWeight','bold'); 
title('Plural nouns test on the dataset with window size of 1', 
'FontSize', 14, 'FontWeight','bold'); 
x=mappedXn_d1(:,1); 
y=mappedXn_d1(:,2); 
hold on 
for i=1:2:75 
line([x(i) x(i+1)], [y(i) y(i+1)], 'Color', 'k', 'LineStyle','--') 
end 
 
% calculate “the relative distance” 
a=1; 
 d=zeros(76,266); 
for j=1:2:76 
    for i=1:76 
    x1=[mappedXn_d1(j,1) mappedXn_d1(j,2)]; 
    y1=[mappedXn_d1(i,1) mappedXn_d1(i,2)]; 
    d(i,a)=pdist2(x1,y1, 'euclidean'); 
    end 
a=a+1; 
 
    for i=1:76 
    x1=[mappedXn_d2(j,1) mappedXn_d2(j,2)]; 
    y1=[mappedXn_d2(i,1) mappedXn_d2(i,2)]; 
    d(i,a)=pdist2(x1,y1, 'euclidean'); 
    end 
    a=a+1; 
     
    for i=1:76 
    x1=[mappedXn_d3(j,1) mappedXn_d3(j,2)]; 
    y1=[mappedXn_d3(i,1) mappedXn_d3(i,2)]; 
    d(i,a)=pdist2(x1,y1, 'euclidean'); 
    end 
    a=a+1; 
     
    for i=1:76 
    x1=[mappedXn_d4(j,1) mappedXn_d4(j,2)]; 
    y1=[mappedXn_d4(i,1) mappedXn_d4(i,2)]; 
    d(i,a)=pdist2(x1,y1, 'euclidean'); 
    end 
    a=a+1; 
     
    for i=1:76 
    x1=[mappedXn_d5(j,1) mappedXn_d5(j,2)]; 
    y1=[mappedXn_d5(i,1) mappedXn_d5(i,2)]; 
    d(i,a)=pdist2(x1,y1, 'euclidean'); 
    end 
    a=a+1; 
     

    for i=1:76 
    x1=[mappedXn_d6(j,1) mappedXn_d6(j,2)]; 
    y1=[mappedXn_d6(i,1) mappedXn_d6(i,2)]; 
    d(i,a)=pdist2(x1,y1, 'euclidean'); 
    end 



 

 

52 

 

    a=a+1; 
     
    for i=1:76 
    x1=[mappedXn_d7(j,1) mappedXn_d7(j,2)]; 
    y1=[mappedXn_d7(i,1) mappedXn_d7(i,2)]; 
    d(i,a)=pdist2(x1,y1, 'euclidean'); 
    end 
    a=a+1; 
     
end 
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