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Abstract

Elucidating the content of a DNA sequence is critical to deeper understand and
decode the genetic information for any biological system. As next generation
sequencing (NGS) techniques have become cheaper and more advanced in
throughput over time, great innovations and breakthrough conclusions have been
generated in various biological areas. Few of these areas, which get shaped by the
new technological advances, involve evolution of species, microbial mapping,
population genetics, genome-wide association studies (GWAs), comparative
genomics, variant analysis, gene expression, gene regulation, epigenetics and
personalized medicine. While NGS techniques stand as key players in modern
biological research, the analysis and the interpretation of the vast amount of data
that gets produced is a not an easy or a trivial task and still remains a great
challenge in the field of bioinformatics. Therefore, efficient tools to cope with
information overload, tackle the high complexity and provide meaningful
visualizations to make the knowledge extraction easier are essential. In this article, we
briefly refer to the sequencing methodologies and the available equipment to serve
these analyses and we describe the data formats of the files which get produced by
them. We conclude with a thorough review of tools developed to efficiently store,
analyze and visualize such data with emphasis in structural variation analysis and
comparative genomics. We finally comment on their functionality, strengths and
weaknesses and we discuss how future applications could further develop in this
field.
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Introduction
High throughput sequencing (NGS) techniques have brought a remarkable revolution

in the field of biology and other closely related fields and have shaped a new trend of

how modern biological research can be done at a large scale level. With the advances

of these techniques, it is feasible nowadays to scan and sequence a whole genome or

exome at a base pair level at a low error rate, in an acceptable time frame and at a

lower cost.

Based on the first Sanger sequencing technique, the Human Genome Project (1990–

2003), allowed the release of the first human reference genome by determining the se-

quence of ~3 billion base pairs and identifying the approximately ~25,000 human genes
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[1-3]. That stood as a great breakthrough in the field of comparative genomics and genet-

ics as one could in theory directly compare any healthy or non-healthy sample against a

golden standard reference and detect genetic polymorphisms or variants that occur in a

genome. Few years later, as sequencing techniques became more advanced, more accurate

and less expensive, the 1000 Human Genome Project [4] was launched (January 2008).

The main scope of this consortium is to sequence, ~1000 anonymous participants of dif-

ferent nationalities and concurrently compare these sequences to each other in order to

better understand human genetic variation. Recently, as a result of the project, 1092 such

human genomes were sequenced and published [5]. The International HapMap Project

(short for “haplotype map”) [6-10] aims to identify common genetic variations among

people and is currently making use of data from six different countries.

Shortly after the 1000 Human Genome Project, the 1000 Plant Genome Project

(http://www.onekp.com) was launched, aiming to sequence and define the transcrip-

tome of ~1000 plant species from different populations around the world. Notably, out

of the 370,000 green plants that are known today, only ~125,000 species have recorded

gene entries in GenBank and many others still remain unclassified [11]. While the 1000

Plant Genome Project was focused on comparing different plant species around the

world, within the 1001 Genomes Project [12], 1000 whole genomes of A. Thaliana

plants across different places of the planet were sequenced.

Similar to other consortiums, the 10,000 Genome Project [13] aims to create a collec-

tion of tissue and DNA specimens for 10,000 vertebrate species specifically designated

for whole-genome sequencing. In addition, the overarching goal of the 1000 Fungal

Genome Project (F1000 - http://1000.fungalgenomes.org) is to explore all areas of fungal

biology by providing broad, genomic coverage of Kingdom Fungi. Notably, sequencing

advances have paved the way to metagenome sequencing, which is defined as an ap-

proach for the study of microbial populations in a sample representing a community by

analysing the nucleotide sequence content. Moreover, NGS will allow for the accurate

detection of pan-genomes which describe the full complement of a superset of all the

genes in all the strains of a species, typically applied to bacteria and archaea [14].

In the near future, sequencing techniques are expected to become even less time-

consuming and more cost-effective in order to screen whole genomes within a few

hours or even minutes. While sequencing techniques improve and develop overtime,

the amount of data produced increases exponentially and therefore the implementation

of efficient platforms to analyze and visualize such large amounts of data in fast and ef-

ficient ways has become a necessity. Following a top-down approach, the current re-

view starts with an overview of generic visualization and analysis tools and file formats

that can be used in any next generation sequencing analysis. While such tools are of a

broad usage, the current review progressively focuses on their application in structural

variation detection and representation and in parallel, commenting on their strengths

and weaknesses, giving insights on how they could further develop to handle the over-

load of information and cope with the data complexity. It is not the scope of this article

to describe in depth the existing sequencing techniques, but readers are strongly en-

couraged to follow a more detailed description about the widely used sequencing tech-

nologies in [15,16]. Thorough explanations of how hundreds of thousands or even

millions of sequences can be generated by such high-throughput techniques is

presented in [17,18] while sequence assembly strategies are extensively explained in

http://www.onekp.com
http://1000.fungalgenomes.org
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[19]. The advantages and the limitations of the aforementioned techniques are

discussed in [20,21].
Sequencing technologies

First, second and third generation

Sequencing techniques are chronologically divided into 3 generations: the first, the sec-

ond and the third. The key principle of the first generation (Sanger or dideoxy) sequen-

cing techniques, which was discovered in 1977, was the use of dideoxy nucleotide

triphosphates (ddNTPs) as DNA chain terminators so that the labeled fragments could

be separated by size using gel electrophoresis. Dye-terminator sequencing discovered in

the late 90s, utilizes labeling in a single reaction, instead of four reactions (A,T,C,G). In

dye-terminator sequencing, each of the four ddNTPs is labeled with fluorescent dyes,

each of which emits light at different wavelengths. Dye-terminator sequencing com-

bined with capillary electrophoresis succeeded in speeding up performance and became

one of the most standardized and widely used techniques.

Second generation high-throughput sequencing techniques generate thousands or

millions of short sequences (reads) at higher speed and better accuracy. Such sequen-

cing approaches can immediately be applied in relevant medical areas where previous

Sanger-based trials fell short in capturing the desired sequencing depth in a manageable

time-scale [22]. High-throughput second generation commercial technologies have

already been developed by Illumina [23,24], Roche 454 [25] and Biosystems/SOLiD.

Today Illumina is the most widely used platform despite its lower multiplexing capability

of samples allowed [26]. Recent HiSeq Illumina systems make it possible for researchers

to perform large and complex sequencing studies at a lower cost. Cutting-edge innova-

tions can dramatically increase the number of reads, sequence output and data generation

rate. Thus, researchers are now able to sequence more than five human genomes at ~30x

coverage simultaneously or ~100 exome samples in a single run.

Helicos BioSciences (http://www.helicosbio.com/), Pacific Biosciences (http://www.

pacificbiosciences.com/), Oxford Nanopore (http://www.nanoporetech.com/) and Complete

Genomics (http://www.completegenomics.com/) belong to the third generation of sequen-

cing techniques, each of which have their pros and cons [16,27,28]. These techniques are

promising to sequence a human genome at a very low cost within a matter of hours.

While today, first generation sequencing is not used due to its forbidden cost and time

consumption, second generation sequencing technologies are widely used due to their

lower cost and time efficiency. Such techniques have led to a plethora of applications such

as DNA-seq and assembly to determine an unknown genome from scratch or look for

variations among genome samples, RNA-seq [29,30] to analyse gene expression or

ChIP-seq [31] to mainly identify DNA regions that are binding sites for proteins,

such as transcription factors. It is not the scope of this review to describe the aforemen-

tioned techniques into depth but we give a short description of DNA sequencing and as-

sembly and we explain below how this can be used to discover structural variations.
DNA sequencing and assembly

DNA sequencing can be applied to very long pieces of DNA such as whole chromo-

somes or whole genomes, but also on targeted regions such as the exome or a selection

http://www.helicosbio.com/
http://www.pacificbiosciences.com/
http://www.pacificbiosciences.com/
http://www.nanoporetech.com/
http://www.completegenomics.com/
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of genes pulled-down from assays or in solution. There are two different scenarios

under which DNA sequencing is carried out. In the first case a reference genome for

the organism of interest already exists, whereas in the second case of de novo sequen-

cing, there is no reference sequence available. The main idea behind the reference gen-

ome approach consists of 3 general steps: Firstly, DNA molecules are broken down

into smaller fragments at random positions by using restriction enzymes or mechanical

forces. Secondly, a sequencing library consisting of such fragments of known insert size

is created, while during a third step, these fragments are sequenced and finally mapped

back to an already known reference sequence. The general methodology is widely

known as shotgun sequencing. The aforementioned process is depicted in Figure 1. In

the case of de novo sequencing, where there is no a priory catalogued reference se-

quence for the given organism, the small sequenced fragments are assembled into

contigs (groups of overlapping, contiguous fragments) and the consensus sequence is

finally established from these contigs. This process is often compared to putting to-

gether the pieces of a jigsaw puzzle. Thus, the short DNA fragments produced are

assembled electronically into one long and contiguous sequence. No prior know-

ledge about the original sequence is needed. While short read technologies produce

higher coverage, longer reads are easier to process computationally and interpret

analytically, as they are faster to align compared to short reads because they have

higher significant probabilities to align to unique locations on a genome. Notable

tools for sequence assembly are the: Celera [32], Atlas [33], Arachne [34], JAZZ [35],

PCAP [36], ABySS [37], Velvet [38] and Phusion [39]. The accuracy of this approach

increases when comparing larger sized fragments (resulting in larger overlaps) of less

repetitive DNA molecules. For larger genomes, this method has many limitations

mainly due to the smaller size of reads and its high cost. The aforementioned

process is displayed in Figure 2.
Figure 1 DNA sequencing. DNA sequencing: 1st step: The DNA of interest is purified and extracted. 2nd
step: Creation of multiple copies of DNA. 3nd step: DNA is shattered into smaller pieces. 4rd step: DNA
fragment sequencing. 5th step: A computer maps the small pieces to an already known reference genome.



Figure 2 DNA assembly. DNA assembly: 1st step: The DNA is purified and extracted. 2nd step: DNA is
fragmented into smaller pieces. 3rd step: DNA fragment sequencing. 4th step: A computer matches the
overlapping parts of the fragments to get a continuous sequence. 5th step: The whole sequence is
reassembled. No prior knowledge about the DNA sequence is necessary.
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The structural variome

A single nucleotide polymorphism (SNP), or equally a single nucleotide variation (SNV),

refers to a single nucleotide change (adenine-A, thymine-T, guanine-G, and cytosine-C)

in genomic DNA which is observed between members of the same biological species or

paired chromosomes in a single individual. A SNP example is shown in Figure 3. SNPs

are single nucleotide substitutions, which are mainly divided into two types: transitions

(interchanges of two purines or two pyrimidines such as A-G or C-T) and transversions

(interchanges between purines and pyrimidines A-T, A-C, G-T and G-C). There are

multiple public databases which store information about SNPs. The National Center

for Biotechnology Information (NCBI) has released dbSNP [40], a public archive for

genetic variation within and across different species. The Human Gene Mutation Data-

base (HGMD) [41] holds information about gene mutations associated with human

inherited diseases and functional SNPs. The International HapMap Project (short for

“haplotype map”) [6-10] holds information about genetic variations among people, so

far from containing data from six countries. The data includes haplotypes (several SNPs

that cluster together on a chromosome), their locations in the genome and their fre-

quencies in different populations throughout the world. Other databases to be men-

tioned are the HGBASE [42], HGVbase [43], GWAS Central [44] and SNPedia [45].

A great variety of tools to detect SNVs and predict their impact is analytically

reviewed in [46].

Recently, the focus has been shifted to understanding genetic differences in the form

of short sequence fragments or structural rearrangements (rather than variation at the
Figure 3 SNP example. A difference in a single nucleotide between two DNA fragments from different
individuals. In this case we say that there are two alleles: C and T.
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single nucleotide level). This type of variation is known as the structural variome. The

structural variome refers to the set of structural genetic variations in populations of a

single species that have been acquired in a relatively short time on an evolutionary

scale. Structural variations are mainly separated in two categories; namely the balanced

and the unbalanced variations. The basic variations include insertions, deletions, duplica-

tions, translocations and inversions. Balanced variations refer to genome rearrangements,

which do not change the total content of the DNA. These are mainly inversions or intra/

inter-chromosomal translocations. Unbalanced variations on the other hand, refer to

rearrangements that change the total DNA content. These are insertions and deletions.

Unbalanced variations are also called copy number variations (CNVs). Figure 4 shows a

schematic representation of such intra/inter-chromosomal balanced and unbalanced

structural variations.
Methods to detect structural variations

During the past years, a great effort has been made towards the development of several

techniques [47] and software applications [46] to detect structural variations in ge-

nomes. In the case of SNP detection, the differences are extracted from local align-

ments whereas for the detection of structural variations approaches, such as read-pair

(RP), read-depth (RD) and split-reads can be used.

Pair-end mapping (PEM)

According to this approach, the DNA is initially fragmented into smaller pieces. The

two ends of each DNA fragment (paired end reads or mate pairs) are then sequenced

and finally get mapped back to the reference sequence. Notably, the two ends of each

read are long enough to allow for unique mapping back to the reference genome. The

idea behind this strategy is that the ends of the reads, which align back to the reference

genome, map back to specific positions of an expected distance according to informa-

tion from stored DNA libraries. For certain cases, the mapping distance appears to be

different from the expected length, or mapping displays an alternative orientation from

that anticipated. These observations can be considered as strong indicators for the oc-

currence of a possible structural variation. Thus, if the mapped distance is smaller than
Figure 4 Structural Variations. This figure illustrates the basic structural variations. A) Inversion. B) Translocation
within the same chromosome. C) Translocation across different chromosomes. D) Duplication. E) Deletion.
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the expected one, it could indicate a deletion or vice versa an insertion. The main dif-

ference between the terms paired end reads and mate pairs, is that while pair-end

reads provide tighter insert sizes, the mate pairs give the advantage of larger insert sizes

[47]. Differences and structural variations among genomes can be tracked by observing

PEM signatures. While PEM signatures together with approaches to detect them are

analytically described elsewhere [47], some common signatures are shown in Figure 5.

Single-end

According to this methodology, multiple copies of a DNA molecule get produced and

randomly chopped into smaller fragments (reads). These reads are eventually aligned and

mapped back to a reference genome. The reasoning behind this approach is that various

reads will map back to various positions across the genome, and exhibit significant over-

lap of read mapping. By measuring the frequency of nucleotides mapped by the reads

across the depth of coverage (DOC), it is possible to obtain an evaluation of the number of

reads that have been mapped to a specific genomic position (see Figure 6). The Depth of

coverage (DOC) is a significant way to detect insertions or deletions, gains or losses in a

donor sample comparing to the reference genome. Thus, a region that has been deleted

will have less reads mapped to it, and vice versa in cases of insertions. Similarly to PEM,
Figure 5 PEM signatures. Basic PEM signatures. A) Insertion. B) Deletion. C) Inversion. More PEM
signatures are visually presented in [47].



Figure 6 Read depth. Read depth: A) Fragments of DNA (Reads) are mapped to the original reference
genome. B) Plotting the frequency of each nucleotide that was mapped at the reference genome.

Pavlopoulos et al. BioData Mining 2013, 6:13 Page 8 of 25
http://www.biodatamining.org/content/6/1/13
the aforementioned methodology is an alternative way to extract information about pos-

sible structural variations described by DOC signatures. While read-depth has a higher

resolution, it gives no information about the location of the variation and it can only de-

tect unbalanced variations. DOC signatures, compared to PEM signatures are more suit-

able to detect larger events, since the stronger the event, the stronger the signal of the

signature. On the other hand, PEM signatures are more suitable to detect smaller events,

even with low coverage, but are far less efficient in localizing breakpoints. Available tools

to detect structural variations and cluster them according to different methodologies are

presented below.

Split-reads

According to this approach, a read is mapped to two separate locations because of pos-

sible structural variation. The prefix and the suffix of a match may be interrupted by a

longer gap. This split read mapping strategy is useful for small to medium-sized

rearrangements in a base pair level resolution. It is suitable for mRNA sequencing,

where absent intronic arrangements can cause junction reads that span exon-exon

boundaries. Often, local assembly is used to detect regions of micro-homology or non-

template sequences around a breakpoint. This is done to detect the actual sequence

around the break points.
File formats

Sequencing techniques generate vast amounts of data that need to be efficiently stored,

parsed and analyzed. A typical sequencing experiment might produce files ranging from

few gigabytes to terabytes in size, containing thousands or millions of reads together

with additional information such as read identifiers, descriptions, annotations, other

meta-data, etc. Therefore, file formats such as FASTQ [48], SAM/BAM [49] or VCF

[50] have been introduced to efficiently store such information.
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FASTQ

It comes as a simple extension of the FASTA format and it is widely used in DNA se-

quencing mainly due to its simplicity. Its main strength is its ability to store a numeric

quality score (PHRED [51]) for every nucleotide in a sequence. FASTQ mainly consists

of four lines. The first line starts with the symbol ‘@’ which is followed by the sequence

identifier. The second line contains the whole sequence as a series of nucleotides in up-

percase. Tabs or spaces are not permitted. The third line starts with the ‘+’ symbol

which indicates the end of the sequence and the start of the quality string which fol-

lows in the 4th line. Often, the third line contains a repetition of the same identifier like

in line 1. The quality string, which is shown in the 4th line, uses a subset of the ASCII

printable character representation. Each character of the quality string corresponds to

one nucleotide of the sequence; thus the two strings should have the same length. En-

coding quality scores in ASCII format, makes FASTQ format easier to be edited. The

range of printed ASCII characters to represent quality scores varies between different

technologies. Sanger format accepts a PHRED quality score from 0 to 93 using ASCII

33 to 126. Illumina 1.0 encodes a Illumina quality score from −5 to 62 using ASCII 59

to 126. Illumina 1.3+ format can encode a PHRED quality score from 0 to 62 using

ASCII 64 to 126. Using different ranges for every technology is often confusing, and

therefore the Sanger version of the FASTQ format has found the broadest acceptance.

Quality scores and how they are calculated per platform is described in [52]. A typical

FASTQ file is shown in Figure 7. Compression algorithms such as [53] and [54] suc-

ceed in storing FASTQ using lower disk space. In order to interconvert files between

Sanger, Illumina 1.3+ platforms, Biopython [55], EMBOSS, BioPerl [56] and BioRuby

[57] come with file conversion modules.

Sequence alignment/Map (SAM) format

It describes a flexible and a generic way to store information about alignments against

a reference sequence. It supports both short and long reads produced by different se-

quencing platforms. It is compact in size, efficient in random access and represents the

format, which was mostly used by the 1000 Genomes Project to release alignments. It

mainly supports 11 mandatory and many other optional fields. For better performance,

store efficiency and intensive data processing, the BAM file, a binary representation of

SAM, was implemented. BAM files are compressed in the BGZF format and hold the

same information as SAM, while they require less disk space. SAM can be indexed and
Figure 7 FASTQ file. 1st line always starts with the symbol ‘@’ followed by the sequence identifier. 2nd
line contains the sequence. 3rd line starts with the symbol ‘+’ symbol which is optionally followed by the
same sequence identifier and any description. It indicates the end of the sequence and the beginning of
the quality score string. 4th line contains the quality score (QS) in ASCII format. The current example shows
an Illumina representation.
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processed by specific tools. While Figure 8 shows an example of a SAM file, a very de-

tailed description of the SAM and BAM files is presented in [58].

Variant call format (VCF)

This specific file type was initially introduced by the 1000 Genomes Project to store the

most prevalent types of sequence variation, such as SNPs and small indels (inserions/

deletions) enriched by annotations. VCFtools [50] are equipped with numerous func-

tionalities to process VCF files. Such functionalities include validations, merges and

comparisons. An example of a VCF file is shown in Figure 9.
Variant calling pipelines

Variant discovery still remains a major challenge for sequencing experiments. Bioinfor-

matics approaches that aim to detect variations across different human genomes, have

identified 3–5 million variations for each individual compared to the reference. It is no-

ticeable that most of the current comparative sequencing-based studies are mainly

targeting the exome and not the whole genome, initially due to the lower cost. It is be-

lieved that variations in the exome can have a higher chance of having a functional im-

pact in human diseases [59]. However, recent studies show that non-coding regions

contain equally important disease related information [60]. Sophisticated tools that can

cope with the large data size, efficiently analyze a whole genome or an exome and ac-

curately detect genomic variations such as deletions, insertions, inversions or inter/

intra chromosomal translocation are currently necessary. Today, only few of such tools

exist and are summarized in Table 1. Many of the tools are error sensitive, as false neg-

atives in base calling may lead to the identification of non-existent variants or to miss-

ing true variants in the sample, something that still remains a bottleneck in the field.
Variant annotation

As genetic diseases can be caused by a variety of different possible mutations in DNA

sequences, the detection of genetic variations that are associated to a specific disease of

interest is very important. Even though most of the variations detected by variant cal-

lers are found to be functionally neutral [74] and do not contribute to the phenotype of

a disease [75], many of them have concluded to important results. In order to better

identify the causative variations for genetic disorders and characterize them, the
Figure 8 BAM/SAM files. Example of an alignment to the reference sequence (pileup). A) Read r001/1 and
r001/2 constitute a read pair; r003 is a chimeric read; r004 represents a split alignment. B) The
corresponding SAM file and their tags for each field.



Figure 9 VCF file. This figure demonstrates an example of a CVF file. A) Different types of variations and
polymorphisms that can be stored in CVF format. B) Example of a CVF format and its fields.
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implementation of efficient variant annotation tools emerges and is one of the most

challenging aspects of the field. Table 2 summarizes the available software which serves

this purpose by highlighting the strengths and the weaknesses of each application.
Visualization of structural variation

Visualization of high throughput data to provide meaningful views and make pattern

extraction easier still remains a bottleneck in systems biology. More than ever, such ap-

plications represent a precious tool for biologists in order to allow them to directly

visualize large scale data generated by sequencing. The vast amounts of data produced

by deep sequencing can be impossible to analyze and visualize due to high storage,

memory and screen size requirements. Therefore, the field of biological data

visualization is an ever-expanding field that is required to address new tasks in order to

cope with the increasing complexity of information. While a recent review [87] dis-

cusses the perspectives and the challenges of visualization approaches in sequencing,

the tables below emphasize on the strengths and the weaknesses of the available tools

respectively.
Alignment tools

Aligning sequences of long length is not a trivial task. Therefore, efficient tools able

to handle this load of data and provide intuitive layouts using linear or alternative

representations i.e. circular are of importance. Table 3 shows a list of the widely used

applications while also providing an overview of the strengths and weaknesses of

each tool.



Table 1 Software for predicting structural variations

Tool Single-End Pair-End Reference
genome

Insertion Deletion Inversion Translocation across
chromosomes

Translocation within
chromosome

Properties Input File

BreakDancer [61] X X X X X X • BreakDancerMax for large
regions and BreakDancerMini
for indels of 10-100 bp

BAM, SAM

CNV-seq [62] X X X X • Shotgun sequencing Map locations from a BAM
file (by SAM tools)

• Robust statistical model

GASV [63] X X X X X X • Geometric approach BAM

• A SV is pictured as a
polygon on a surface

• Comparison of SVs across
multiple samples

HyDRa [64] X X X X X X • SV breakpoints by
clustering discordant
paired-end alignments

Tab-delimiteddiscordant
paired-end mappings

MoDIL [65] X X X • Medium sized (10-50 bp)
paired-end indels

Software specific

• Able identify shorter
heterozygous, as well as
homozygous variants
with higher accuracy

MrFast [66] X X X • Short sequence reads
(>25 bp)

FASTA, FASTQ

NovelSeq [67] X X • Long novel sequence
insertions

Software specific

• Multiple types of variations

PEMer [68] X X X X X X • PEMer: variations SVdB API

• SV-Simulation: simulated
paired-end reads

• BreakDB: annotations
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Table 1 Software for predicting structural variations (Continued)

Pindel [69] X X X X • Large deletions (1 bp–10 kb) BAM,SAM,FASTA, FASTQ

• Medium sized insertions
(1–20 bp) from 36 bp
paired-end short reads

rSW-seq [70] X X X X • Based on an iterative
Smith-Waterman dynamic
sequence alignment
method

Tab-delimited file denoting
the tumor/normal status
for each of aligned read
positions

VariationHunter [71] X X X X • Evaluation of the entire
possible mapping set of
positions of each paired-end
read and final mapping of
the SVs interdependently.

Software specific

VarScan [72,73] X X X X • Germline variants (SNPs and
indels) in individual samples
or pools of samples.

Pileup, VCF

• Shared and private variants
in multi-sample datasets
(with mpileup).

• Somatic mutations, LOH
events, and germline variants
in tumor-normal pairs.

• Somatic copy number
alterations (CNAs) in
tumor-normal exome
data.

Pavlopoulos
et

al.BioD
ata

M
ining

2013,6:13
Page

13
of

25
http://w

w
w
.biodatam

ining.org/content/6/1/13



Table 2 Variant annotators

Tool Annotation Data support

Annotate-it [76] SNPs, miRNA, Gene, Custom OMIM, dbSNP, 200 Danish genomes,
NHLBI Exomes, 1000 Genomes

KGGSeq [77] Indels, SNPs, Gene dbSNP, 1000 Genomes

ANNOVAR [78] Indels, SNPs, miRNAs, Gene, Custom dbSNP, NHLBI Exomes, 1000 Genomes

Anntools [79] Indels, SNPs, miRNAs, Gene, Custom dbSNP, 1000 Genomes

SeqAnt [80] Indels, SNPs, Gene dbSNP, 1000 Genomes

SVA [81] Indels, SNPs, Gene, Custom OMIM, dbSNP, 1000 Genomes

TREAT [82] Indels, SNPs, Gene OMIM, dbSNP, 1000 Genomes

VAAST [83] Indels, SNPs -

VarioWatch [84] SNPs, Gene OMIM, dbSNP, 1000 Genomes

Var-MD [85] SNPs -

VarSifter [86] Indels, SNPs -
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Genome browsers

Genome browsers are mainly developed to display sequencing data and genome anno-

tations from various data sources in one common graphical interface. Initially genome

browsers were mainly developed to display assemblies of smaller genomes of specific

organisms, but with the latest rapid technological innovations and sequencing improve-

ments, it is essential today to be able to navigate through sequences of huge length,

and simultaneously browse for genomic annotations and other known sources of infor-

mation available for these sequences. While recent studies [94-96] try to review the

overlaps and comment on the future of genome browsers, we focus on the most widely

used ones and we comment on their usability and their strengths as shown in Table 4.

Visualization for comparative genomics

Comparative genomics is expected to be one of the main challenges of the next decade

in bioinformatics research, mainly due to sequencing innovations that currently allow

sequencing of whole genomes at a lower cost and a reasonable timeframe. Microbial

studies, evolutionary studies and medical approaches already take advantage of such

methods to compare sequences of patients against controls, newly discovered species

with other closely related species and identifying the presence of specific species in a

population. Therefore, a great deal of effort has been made to develop algorithms that

are able to cope with multiple, pairwise and local alignments of complete genomes.

Alignment of unfinished genomes, intra/inter chromosome rearrangements and identi-

fication of functional elements are some important tasks that are amenable to analysis

by comparative genomics approaches. Visualization of such information is essential to

obtain new knowledge and reveal patterns that can only be perceived by the human

eye. In this section we present a list of lately developed software applications that aim

to address all of the aforementioned tasks and we emphasize on their main functional-

ity, their strengths and their weaknesses (see Table 5).

Discussion
Advances in high throughput next generation sequencing techniques allow the produc-

tion of vast amounts of data in different formats that currently cannot be analyzed in a



Table 3 Alignment tools

Tool Purpose Properties Support Availability

ABySS Explorer [88] • Global sequence assemblies from smaller
fragments of DNA

• de-Bruijn directed graphs • DOT files [63] • Java stand-alone application

CLC Genomics
workbench

• Analysis of de novo assembly • SNP detection techniques • Sanger, 454, Illumina and SOLID • Commercial stand-alone application

• genomic rearrangements structural
variations

EagleView [89] • Large genome assemblies • Multiple-line scheme • Navigation by genomic location, read
identifiers, annotations, descriptions,
user-defined coordinate map

• Free stand-alone application

Hawkeye [90] • Detection of anomalies in data and visually
identify and correct assembly errors

• Consensus validation of potential genes,
dynamic filtering and automated
clustering

• Compatibility with Phrap, ARACHNE
[34], Celera Assembler [32] and others

• Free stand-alone application

LookSeq [91] • Visualization of sequences derived from multiple
sequencing technologies

• Browsing at different resolutions • SAM/BAM files • Web applicastion

• Read-depth coverage

• Putative single nucleotide and SV

MagicViewer [92] • Assembly visualization and genetic variation
annotation tool mainly developed to easily
visualize short read mapping

• Identification and annotation of genetic
variation based on the reference genome

• Multiple color schemes • Pipeline to detect, filter, annotate
visualize or classify by function genetic
variations• Zoomable interface

MapView [93] • Alignments of huge-scale single-end and
pair-end short reads

• Multiple navigation • MapView formatted (MVF) files • Free stand-alone application

• Zooming modes

• Multi-thread processing

• Variation analysis
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Table 4 Genome browsers

Tool Purpose Properties Support Availability

AnnoJ [97] • Deep sequencing and other genome
annotation data

• Implemented by users, to handle data and
render it into a visible form.

• Web 2.0 application implemented in
JavaScript

• Web 2.0 javascript application

• Plugin architecture

• Smooth navigation • Distribution of work between the server
and the client with distant access through
web services

Argo • Manual annotations of complete
genomes

• ComBo comparative viewer to view dot
plots of multiple aligned sequences

• FASTA, Genbank, GFF, BLAST, BED, Wiggle
and Genscan files

• Stand-alone java application
that can be launched as an
applet or a java web start

CGView [98] • Static and interactive graphical maps
of circular genomes using a circular
layout

• Export of graphical maps in PNG, JPG or
SVG formats

• Series of hyperlinked maps showing
expanded views

Implemented in Java and it
comes with its own API

• XML formats• Generation of a series of hyperlinked maps
showing expanded views

Combo [99] • Dynamic browser to visualize alignments
of whole genomes and their associated
annotations

• Use of a dot plot view • Zoom in and out at various resolutions • Stand-alone java application

• Highlighted views of detailed information
from specific alignments and annotations

• Its own file format

Ensembl [100,101] • Annotation, analysis and display of
various genomes

• Optimized to serve thousands users per
day and handling large amounts of data

• API for accessing and associating
genome-scale data from different
species across the taxonomy

• Web application

GBrowse [102,103] • Combination of databases and interactive
web pages to manipulate and display
genome annotations

• GBrowse_syn is an extension to show
dot-plots for comparative genomics

• “rubber band” interface to allow faster
zooming

• Component of the Generic
Model Organism System
Database Project (GMOD) [104]

• HTML/Javascript

Genome Projector [105] • Circular genome maps, traditional genome
maps, plasmid maps, biochemical pathways
maps and DNA walks

• Limited to bacterial species with circular
chromosomes

• Google Maps API to offer smoother
navigation and better searching
functionality

• Web application

• It comes with its own API

IGB [106] • Optimized to achieve maximum flexibility
and high quality genome visualization

• Visualization of tiling array data, NGS
results, genome annotations, microarray
designs and the sequence itself

• Rapid navigation through multiple
zooming scales and across large regions
of genomic sequence

• Stand-alone java application
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Table 4 Genome browsers (Continued)

• Ability to handle huge datasets and
diverse data sources and formats

IGV [107] • High-performance and ability to interactively
explore and integrate large datasets

• Sequence alignments, microarrays,
and genomic annotations

• Great variety of input file formats • Standalone application

• Integration of meta-data as heatmaps
for deeper analysis

UCSC Cancer
Genomics
Browser [108]

• Integration of clinical data • Heatmaps • Searching capabilities to find patterns
in the huge amounts of clinical and
genomic data that are
gathered in large-scale cancer studies

• Web application

• Boxplots

• Proportions

UCSC Genome
Browser [109]

• Rapid linear visualization, examination, and
querying of the data at many levels and it
currently accommodates genomes of ~50
species

• Gene Sorter: expression, homology and
other information among related groups of
genes.

• Annotation datasets: mRNA alignments,
mappings of DNA repeat elements, gene
predictions,
gene-expression data, disease-association
data

• Genome Graphs for
uploading and displaying
genome-wide data sets

• Blat: mapping any sequence to the
genome while the Table Browser provides
direct access to the underlying database.

• VisiGene: browsing through a large
collection of in situ mouse and frog
images to examine expression patterns

• Panning, zooming, and dragging
capabilities increase the quality of
interaction

• Uploading a large variety of files

• User specific customized sessions.

X:map [110] • Mappings between genomic features and
Affymetrix microarrays

• Location of individual exon probes with
respect to their target genes, transcripts and
exons.

• Google Maps API to analyse and further
visualize data through an associated
BioConductor package

• Web application

Pavlopoulos
et

al.BioD
ata

M
ining

2013,6:13
Page

17
of

25
http://w

w
w
.biodatam

ining.org/content/6/1/13



Table 5 Comparative genomics

Tool Purpose Properties Support

Cinteny [111] Fast identification of syntenic regions • Flexible parameterization • Pre-loaded annotated mammalian,
invertebrate and fungal genomes

• User-provided data such as orthologous
genes, sequence tags or other markers

ggbio [112] Views of particular genomic regions and
genome-wide overviews

• ideograms • Bioconductor Library

• grand linear views

• sequence fragment length

• edge-linked interval to data view,

• mismatch pileup,

• several splicing summaries

GenomeComp [113] A tool for summarizing, parsing and visualizing
a genome wide sequence comparison

• A tool to locate the rearrangements,
insertions or deletions of genome
segments between species or strains

• Fasta format

• Genbank format

• EMBL format

•
BLAST output file

Circos [114] Developed to identify and analyze similarities
and differences between larger genomes

• Circular layout • It supports its own file format

• Scatter, line, and histogram plots, heat
maps, tiles, connectors, and text

DHPC [115] Visualization of large-scale genome sequences
by mapping sequences into a two-dimensional
using the space-filling function of Hilbert-Peano
mapping.

• Repeating sequences • DNA sequences can be loaded in
plain text or FASTA forma

• Degree of base bias

• Regions of homogeneity and their
boundaries,

• Mark of annotated segments such as
genes or isochores.

HilbertVis [116] Functions to visualize long vectors of integer
data by means of Hilbert curves

• Chip-Seq data • The stand-alone version can load
GFF, BED/Wiggle and Maq map files.

• Chip-chip data
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Table 5 Comparative genomics (Continued)

• Exploration at different zoom levels
of detail

• The R packages HilbertVis and
HilbertVisGUI are integrated in the
R / Bioconductor statistical environment
and can display any data vector
prepared with R.

In-GAVsv [117] Detection and visualization of structural variation
from paired-end mapping data and detection
of larger insertions and complex variants with
lower false discovery rate

• Identification of different types of
SVs, including large indels, inversions,
translocations, tandem duplications
and segmental duplications.

• A FASTA formatted reference sequence
and a SAM alignment are required

• A PTT formatted annotation file for
the reference sequence is optional.

• Distinction between homozygous
and heterozygous variants

Meander [118] It is mainly developed to visually discover and
explore structural variations in a genome based
on Read-Depth and Pair-end information

• Linear view • It supports its own file format both for
RD and paired-end data

• Hilbert curve –based view

• Comparison between up to four samples
against a reference simultaneously

• Visualization ofvarious types of structural
inter/intra chromosomal variations

• Exploration of data at different resolution
levels

MEDEA [119] Genomic feature densities and genome alignments
of circular genomes

• Customization of since tracks can by
dragging and dropping into a desired
position

• It supports its own file format

• User-defined color schemes

• Zooming into specific regions and
smooth navigation

MizBee [120] Synteny browser for exploring conservation
relationships in comparative genomics data

• Side-by-side linked views and data
visualization at different scales, from
the genome to the gene

• Edge hustling and layering to increase
visual signals about conservation
relationships related to closeness,
size, relationship, and orientation.

Seevolution [121] Interactive 3D environment that enables visualization
of diverse genome evolution processes

• Interactive animation of mutation histories
involving genome rearrangement, point
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Table 5 Comparative genomics (Continued)

mutation, recombination, insertion and
deletion.

• Accepts complete phylogenetic trees
and allows path tracing between any
two points.

•
Simultaneous visualization of multiple
organisms related by a phylogeny.

•
3D models of circular and linear chromosomes

Sybil [122] Comparative genome data, with a particular
importance on protein and gene clustered
data

• Graphical demonstration of local alignment
of the genomes in which the clustered
genes are located

• Genomes are organized in a vertical heap,
as in multiple alignments and shaded areas
links are used to connect genes that belong
to the same cluster

VISTA [123] Global DNA sequence alignments of arbitrary
length

• Global and alignment visualization up to
several megabases under the same scale

• Dynamic and interactive dot-plots
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non-automated way. Visualization approaches are today called upon to handle huge

amounts of data, efficiently analyze them and deliver the knowledge to the user in a

visual way that is concise, coherent and easy to comprehend and interpret. User friend-

liness, pattern recognition and knowledge extraction are the main goals that an optimal

visualization tool should achieve. Therefore, tasks like handling the overload of infor-

mation, displaying data at different resolutions, fast searching or smoother scaling and

navigation are not trivial when the information to be visualized consists of millions of

elements and often reaches an enormous level of complexity. Modern libraries, able to

visually scale millions of data points at different resolutions are nowadays essential.

Current tools lack dynamic data structure and dynamic indexing support for better

processing performance. Multi-threaded programming or parallel processing support

would also be a very intuitive approach to reduce the processing time, when applica-

tions run in multicore machines with many CPUs. Efficient architecture setup, that

would decentralize data and distribute the work between the servers and the clients, is

also a step towards the reduction of processing time.

While knowledge is currently stored in various databases, distributed across the

world and analyzed by various workflows, the need of integration among available tools

is becoming a necessity. Next-generation visualization tools should be able to extract,

combine and analyze knowledge and deliver it in a meaningful and sensible way. For

this to happen, international standards should be defined to describe how next gener-

ation sequencing techniques should store their results and exchange them through the

web. Unfortunately today, many visualization and analysis approaches are being devel-

oped independently. Many of the new methods come with their own convenient file

format to store and present the information, something that will become a problem in

the future when hundreds of methods will become available. Such cases are widely

discussed in biological network analysis approaches [124,125].

Visual analytics in the future will play an important role to visually allow parameteri-

zations of various workflows. So far it may be confusing and misleading to the user,

when various software packages often produce significantly different results just by

slightly changing the value of a single parameter. Furthermore, different approaches

can come up with completely different results despite the fact that they try to answer

the same question. This can be attributed to the fact that they follow a completely dif-

ferent methodology, therefore highlighting the need for enforcing a more general out-

put format. Future visualization tools should offer the flexibility to easily integrate and

perform fine-tuning of parameters in such a way that it allows the end users to readily

adjust their research to their needs.

Finally, data integration at different levels varying from tools to concepts is a neces-

sity. Combining functions from diverse sources varying from annotations to

microarrays, RNA-Seq and ChIP-Seq data emerges towards a better understanding of

the information hidden in a genome. Similarly, visual representations well established

in other scientific areas, such as economics or social studies, should be shared and ap-

plied to the current field of sequencing.
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