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Abstract—The connections in a graph generate a structure that is independent of a coordinate system. This visual metaphor allows

creating amore flexible representation of data than a two-dimensional scatterplot. In this article, we present STAD (Simplified Topological

Abstraction of Data), a parameter-free dimensionality reductionmethod that projects high-dimensional data into a graph. STAD

generates an abstract representation of high-dimensional data by giving each data point a location in a graphwhich preserves the

approximate distances in the original high-dimensional space. The STAD graph is built upon theMinimumSpanning Tree (MST) to which

new edges are added until the correlation between the distances from the graph and the original dataset is maximized. Additionally,

STAD supports the inclusion of additional functions to focus the exploration and allow the analysis of data from new perspectives,

emphasizing traits in data which otherwise would remain hidden.We demonstrate the effectiveness of our method by applying it to two

real-world datasets: traffic density in Barcelona and temporal measurements of air quality in Castile and Le�on in Spain.

Index Terms—Visual analytics, networks, dimensionality reduction, data transformation
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1 INTRODUCTION

DATA visualization is extensively used to reveal patterns
and structures in data. The display of high-dimensional

datasets concerning point clouds with a high number of
attributes continues to be a relevant research field due to
the wide range of applications. The choice of an informative
visualization technique depends not only on the characteris-
tics of the data but also on the tasks to be performed. For
example, a visualization to analyze the evolution of a high-
dimensional time series requires a different approach than
projecting a document corpus. While both aim to represent
the data in a limited number of dimensions, the first empha-
sizes the progressive and continuous changes that occur in
time and the second aims to find differences between
groups of documents.

Dimensionality reduction techniques allow for embed-
ding high-dimensional data into a plot with two or three
axes. These solutions provide a visual scalability advantage
over classical scatterplot matrices and parallel coordinates
[1]. However, the low-dimensional transformations rely on
assumptions and parameterizations which can compromise
part of the original information. The most recent methods
such t-SNE [2] or UMAP [3] are effective in identifying simi-
lar elements and projecting them separated from other
groups. These projections favor the preservation of the clos-
est neighbors rather than preserving all distances. Although

global relationships are not omitted entirely between the
points, the projections in the lower space can cause an
incomplete mapping of the dataset [4].

On the other hand, Topological Data Analysis (TDA) aims
to deduce and recognize geometric structures from underly-
ing data by means of connecting elements in a graph. The
combination of a scalar function with the original source
allows exploration of data from different perspectives
highlighting information which otherwise would be hidden.
Unlike dimension reduction techniques the reconstruction of
topology may not be faithful to the original data geometry,
but does preserve the continuity between data shapes.
Although TDA has demonstrated remarkable results in spe-
cialized studies [5], [6], [7], it relies on data summaries (e.g.,
clusters) instead of individual data points and therefore lim-
its the resolution of the exploration phase. In addition, the
cornerstone of TDA is clustering and appropriate lens which
precludes hypothesis-free data exploration.

In this paper we present STAD, a parameter-free
dimensionality reduction method which transforms the
high-dimensional data into a graph highlighting the
underlying structure. The projection into a graph provides
a higher degree of flexibility to represent the interdepen-
dencies between points than coordinate mapping techni-
ques (Fig. 1). Furthermore, STAD allows for incorporating
additional functions which can intensify the specific sig-
nals adding new perspectives to the exploratory analysis.
Additionally, STAD networks generate a representation of
data without aggregation, i.e., STAD encodes the original
data points as vertices in the graph which provides a high
resolution of the data.

This paper is organized as follows. In Section 2 we give
an overview of related work in the detection of structure in
data through dimension reduction and exploratory techni-
ques using graph representations. Section 3 describes the
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proposed methodology, followed by Section 4, in which we
present two case studies applying STAD. Section 5 includes
an evaluation of STAD in comparison to other dimensional-
ity reduction techniques. The discussion is presented in Sec-
tion 6 and, finally, Section 7 covers conclusions and possible
directions for future work.

2 RELATED WORK

The exploration of high-dimensional data has been presented
in different areas of research in information visualization,
data mining, and machine learning [9]. We review the related
work in these areas below, more specifically the topics of
dimension reduction, visualization techniques and TDA.

2.1 Dimension Reduction and Embeddings

Dimensionality reduction techniques transformahigh-dimen-
sional space to a low dimensional one. Considering as input
theN2 data points of a pairwise distance matrix, the methods
to visualize the global structure falls in the multidimensional
scaling (MDS) class [10]. Torgerson Scaling [11], a particular
case of PCA, finds a linear and orthogonal transformation of
data revealing the most informative view without modifying
the local and global relationship between elements. More ver-
satile approaches are non-linearmetricMDS (NMDS) [12] and
Sammon mapping [13], which overcome the linearity limita-
tion introducing an iterative approach to match the distances
between the original and projected space by minimizing the
error between bothmatrices. The difference between Sammon
mapping and non-linear MDS is that Sammon normalizes the
original distance to emphasize small differences. The iterative
MDS approach has been the basis for other models with
improved versions of the loss functions [14].

The Isomap algorithm [15] is also based on the iterative
MDS model, but using geodesic distances instead of euclid-
ean distance. The algorithm defines a neighboring region
based on a parameter " given by the user. Once the neigh-
bors are defined, the low-dimensional embedding is gener-
ated in a similar fashion to iterative MDS. This method
eliminates the need for estimating distances between widely
separated elements.

The underlying idea of associating the pairwise distances
between the original space and a projected space is also
employed in the STAD method. The difference with MDS
techniques is that the projection takes place into a graph
and more precisely in the path described by nodes and
edges. The change in spatialization from a fixed coordinate
system to a free-dimensional space provides a more flexible
visual technique to represent the information as compared
in Fig. 1. Instead of mapping the position in a lower space,
the STAD graph aims to visualize the relationships between
the data elements.

Beyond MDS techniques, more recent dimensionality
reduction techniques such as t-SNE [2], LargeVis [16] and
UMAP [3] improve the projection onto low-dimensional
space by intensifying the detection of nearest neighbors.
UMAP is able to organize these local signalsmore coherently
according to original relationships between points or collec-
tion of points in the high-dimensional space, allowing global
interpretations closer to MDS projections. These techniques
assume an intrinsic probability distribution which smoothes
the projection in the low-dimensional space improving the
detection of local patterns distorting the global one. How-
ever, they tend to increase the division among neighbor-
hoods, which are beneficial for identifying local clusters but
contrary to perceiving the relationships between them, and
identifying global trends or continuous patterns [4].

2.2 Exploration of Data Through Network Structures

A number of earlier research projects used the network met-
aphor to facilitate the understanding of multidimensional
data (e.g., [17], [18], [19], [20]). All these techniques depend
on a parameter which determines the elements’ connectiv-
ity. The exploratory system presented by J€anicke et al. [20]
employs the the Minimum Spanning Tree (MST) to define
the minimal structure of the data. Additional edges are
added to establish a more consistent data structure using a
force-directed graph layout. STAD uses the same concept of
adding edges on top of a MST to draw the data shape but
the number of edges are automatically selected through a
minimization process. The structures presented in STAD
generate a more accurate representation of the original

Fig. 1. Comparison of methods to visualize a three-dimensional point cloud. The dataset is composed of 900 observations randomly sampled from
the original source which represents a horse figure [8]. (a) Non-linear multidimensional scaling projection. (b) t-SNE. The perplexity was 299 (the
max. value supported by the implementation) to maximize the preservation of the global picture of the point-cloud. (c) UMAP. The parameter neigh-
boring was 900 (equal to the size of the dataset). Similarly to t-SNE, the parameter was set to capture the maximum global structure in the dataset.
(d) STAD projection without additional filters using the Kamada-Kawai layout. The visualization of networks requires additional graph-drawing techni-
ques to locate nodes into a plane, although the number of nodes and edges remains identical between methods. (e) STAD projection using the
ForceAtlas2 layout. Unlike Kamada-Kawai, the energy system attracts a high density of nodes to the center of mass, causing tight clusters of nodes.
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high-dimensional space by providing not only the structural
shape but also an intuition of the density through the inter-
connection of nodes in a region of the graph.

Topology studies the global structure of a dataset from a
geometrical perspective providing an informative sum-
mary. Topological Data analysis is the general term used for
a collection of particular methods to analyze high-dimen-
sional datasets [21]. Graph representations are commonly
used to illustrate the underlying structure of data, but nodes
are aggregations of points rather than individual elements.
Under this umbrella, data skeletonization is an important
shape descriptor from a disconnected point cloud [22], [23],
[24]. The selection of a proper skeleton is defined by the
representation which shows the most persistent features.
The stability of topological features is visualized in a so-
called barcode [25] and analyzed to identify suitable param-
eterization [26], [27]. Other TDA methods rely on scalar
functions to guide the summarization of high-dimensional
data such as Morse-Smale Complexes (MSC) [28], [29], [30],
Reeb graphs [31] and the Mapper algorithm introduced by
Singh et al. [32]. While these functions are defined to deter-
mine the continuous space of a manifold, the functions in
STAD modify the projections of distances by controlling the
connections between nodes. However, since the same func-
tions can be applied in both structures, they can be similar.
In addition the evaluation criteria in STAD rely on the asso-
ciation between the graph representation and the original
space which differs from the geometrically persistent impli-
cations of TDA.

3 METHODOLOGY

Network visualization representations are projections of
data expressed independently from a coordinate system;
the visual structure connects elements according to their
relationships and not their location. We extend the concept
to represent the similarity (distance) between two nodes as
the path described by the edges in the network. Once a simi-
larity metric is chosen, a distance matrix DX containing the
pairwise distances between all elements can be defined. The
distance matrix can be considered a complete weighted
graph GX, where the indices of the matrix represent the ver-
tices of the graph and the edge weights the distance
between any two elements.

STAD proposes a new method to generate the structure
of data by transforming the distance matrix into a graph.
This method converts the complete graph GX into a non-
complete unit-distance graph U (i.e., all edges in the net-
work have the same length of 1) where the distance between
datapoints is reflected in the length of the shortest path
between them. That is, the distance between two distant
points is built from the neighborhoods of other nodes. A
STAD network forms a single connected component, and it
ensures the path for any combination of vertices exists. The
information presented in the STAD networks is an approxi-
mation of the original complete weighted graph due to dis-
cretizing the distances in unitary segments. The number of
edges in the unit-distance graph controls the shape of the
data, and a final graph can vary from the minimum span-
ning tree to the complete graph. The STAD procedure
selects the number of edges automatically by maximizing

the correlation between the weighted distance matrix DX

and the unit-distance graph.
In Section 3.1, we describe the details of the STAD algo-

rithm and illustrate the steps with a simulated example. In
Section 3.2, we present an extension of STAD to amplify sig-
nals in data through the addition of filters.

3.1 STAD Base Algorithm

The STAD algorithm can be split in eight sequential steps
(Fig. 2): create the distance matrix, build an MST from the
complete weighted graph, convert the MST to the unit-dis-
tance-graph, add edges to the unit-distance graph, evaluate
the objective function, visualize the relationship between
correlation and the number of edges, identify the optimal
number of edges automatically and create a node-link dia-
gram of the final network.

3.1.1 Create Distance Matrix in Original

High-Dimensional Space

Let X be a space with n elements and m dimensions in IRm,
and ametric exists which determines all pairwise distances dij
with 1 � i, j � n. The distance matrix DX is the squared
matrix with size nxn containing all the distances dij. This dis-
tance matrix DX is the only required element to generate a
STAD network. From our perspective, the matrix DX is
understood as an undirected, weighted and fully connected
graph GX with n vertices and n2�n

2 edges where each edge eij
has a weight of value dij. Fig. 2a illustrates the distancematrix
creation from a point cloud and the representation of the fully
connected graph. The similarity between each pair of ele-
ments is projected as edges in the graph. Notice that edges in
GX are undirected due to the symmetric property of the
matrix and the diagonal elements are omitted in the graph.

3.1.2 Build MST From Complete Weighted Graph

Next, a minimum spanning tree (MST) is computed for GX.
The MST is a subset of n� 1 edges that connects all vertices
without loops andwith a minimal total sum of edge weights.
Given this structure, the distance can be calculated between
any two vertices as the length of the path connecting the two.
Fig. 2b shows the MST network for the complete graph GX.
Note that the MSTmay not be unique and alternative combi-
nations of edges can produce the same result.

3.1.3 Convert MST to Unit-Distance Graph

The MST is the first unit-distance graph U0 considered in
STAD (Fig. 2c) and the addition of edges will improve the
association between U and GX. By transforming the com-
plete graph GX into a unit-distance graph U , we reduce the
graph dimension of the original into a two-dimensional
graph formalized by Erdo��s [33]. Removing the edge weights
and therefore converting the graph into a unit-distance
graph where all edges have the same weight is necessary
for calculating the subsequent STAD networks.

3.1.4 Add Edges into Unit-Distance Graph

The addition of new edges to the unit-distance graph U pro-
duces a new graph Ui, where i is the number of edges
included in addition to the MST.
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First, edges are sorted by weight to define the order in
which they are added. For instance, ei�1 < ei means that
the weight of ei�1 is smaller than that of ei, or that the data-
points referred to in ei�1 are closer together in the original
space than those referred to in ei. Then the edges are added
into the network Ui following a cumulative process so that
if e1 < e2 < e3 < � � � < en�1 < en then U1 � U2 � U3 � � � �
� Un�1 � Un where Ui is the unit-distance graph with the
sequence of edges e1, e2, e3; . . . ; ei from GX. Although edges
are sorted and added into the unit-distance graph by their
weight, all edges in U itself are unweighted. Fig. 2d shows
three examples of unitary graphs to give an intuition into
how the network evolves by adding new edges in addition
to the MST. The number of possible unitary graphs U
depends on the number of data elements in the space X, so
that nðn�1Þ

2 þ 1.

3.1.5 Evaluate the Objective Function: Calculate

Correlation Between Distances in Original

Space and Those in Graph Space

From the unit-distance graph Ui, the computation of the
shortest path for every pair of vertices produces a squared
matrixDUi

with size n� n comparable to the distance matrix
DX for the original space X. The Pearson correlation is used
to measure the agreement betweenDUi

and DX. Contrary to
the statistics absolute error, correlation is invariant under
different scalings and takes a known range within -1 and 1
[34]. The correlation between the two matrices during the
STAD process is limited to the range from 0 to 1 because
the distances projected in DU follow a similar mapping,
i.e., long distances in DX are projected as long distances
in DU . This finite range provides an intuition of the algo-
rithm performance and a comparable benchmark between
iterations at all levels of data. Fig. 2e exemplifies the
changes in the distance matrix DUi

for different values of i
together with association value with the original distance
matrix DX.

3.1.6 Optional: Visualize the Relationship Between

Correlation and the Number of Edges

The evaluation of the correlation for consecutive values of i
describes a quasi-convex function. The influence of an edge
addition at the beginning of the sequence (i.e., at low values
of i) has a large effect on the correlation with distance
matrix DU . The evaluation of correlation at this stage may
fluctuate when U contains few edges but describes a convex
curve when the amount of edges is big enough. The number
of edges needed to reach maximum correlation depends on
the size and nature of the data. Intuitively, the association
between DX and DU is related to the concept of persistence
of clustering solutions [35], i.e., if the shape is persistent
along the edges, the computed correlation will be consis-
tently similar. Fig. 2f shows the correlation curve for multi-
ple evaluations. The correlation value initially increases by
adding edges on top of the MST, reaching its maximum
quickly. After the maximum, there is a constant decrease in
the correlation when adding more edges demonstrating
that these additional edges degrade the projection of data.

Fig. 2. STAD base algorithm illustrated in eight steps: (a) Create dis-
tance matrix DX: From the point cloud and a defined distance metric,
the pairwise distances between all elements are computed. The com-
plete graphGX is derived fromDX by encoding the distances as weights
in the network. (b) Build MST from complete weighted graph: The MST is
computed from the complete weighted graph GX. (c) Convert MST to
unit-distance graph: The weights from the MST are removed and the
path is used as a new measure of distance. (d) Add edges into unit-dis-
tance graph: Edges are sorted and added to the graph in sequential
order. (e) Evaluate the objective function: The correlation is computed
between the distances from the unit-distance graph and the original dis-
tance matrix. (f) Visualize the relationship between correlation and the
number of edges. (g) Identify optimal number of edges: The optimal is
found at iteration with maximum correlation. (h) Create a node-link dia-
gram: Original distances are added as weights and a proper visual layout
is chosen.
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3.1.7 Identify the Optimal Number of Edges

Automatically

STAD uses simulated annealing (SA) [36] to estimate the
optimal Ui, which maximizes the correlation between the
distances from the STAD graph and the original distance
matrix, and provides a representative data projection of X.
SA approximates the combination of links which maximize
the correlation between DUi

and DX . This heuristic is a sto-
chastic process and estimates the global optimum by explor-
ing the discrete space of edges (Fig. 2g). The SA candidate
generator reduces failures on non-convex regions produced
by the correlation, mainly when the graph is composed of
only a few edges. Note that as the resulting network is ulti-
mately explored visually and structural features are kept
along networks with a similar number of edges (persistence
of structural features), the difference between a global maxi-
mum and an approximation thereof does not imply notice-
able deviations in STAD. The start and end of these ranges
are only identifiable after the evaluation of all links. Fortu-
nately, these do not all have to be computed, as the most
important characteristics are also the most easily detectable.

The time complexity of calculating DUi
is Oð Vj j þ Ej jÞ as

described in the Breadth-first search algorithm definition in
[37]; where Vj j is the number of vertices and Ej j is the num-
ber of edges in the graph. Although the number of vertices is
fixed, the number of edges evaluated at iteration i influences
the running time and varies between Oð V � 1j jÞ when the
MST is evaluated andOð Vj j2Þwhen the graph is complete.

3.1.8 Create Node-Link Diagram of Final Network

Networks require a graphical convention to be visualized.
Generally, they are drawn as node-links representations pro-
jected in the two-dimensional plane. Although the STAD
methodology generates an unweighted graph (unit-distance
graph), we include the distances from the original metricDX

in the final node-link diagram as this improves the visual
representation. Fig. 2h shows the resulting network includ-
ing the distances as weights in the edges. Note that the STAD
graph is independent of the graph drawing algorithm used,
the focus is on the identification of signals described by the
connections of elements rather than the coordinates of nodes.
However, graph drawings which minimize the number of

crossings and place together small edgeweight are appropri-
ate to detect data structures, e.g., ForceAtlas2 [38] and
Kamada-Kawai [39].

3.2 Filters in STAD

The transformation of datapoints and weights from a com-
plete graph into a unit-distance graph representation can
hide part of the information, and we can expect that not all
patterns in data will be revealed in a STAD graph. In partic-
ular, prior knowledge might reveal that for certain applica-
tions, specific datapoints should be pulled apart even if
they are located close together when considering the com-
plete high-dimensional space. We propose an extension of
the STAD base algorithm to highlight other signals in the
data by the inclusion of functions that act as filters on data
projections.

Filters are an ordered set of values associated with an
indexed sequence of natural numbers. They provide limits
and thus a context to an arbitrary metric space. Filters can
be defined from derived dimensions through statistical
functions, subsets of dimensions or external data. Real
sequences may be discretized by defining equidistant inter-
vals based on scale or density. The addition of filters focuses
on the exploration of data allowing, for example, to inte-
grate domain knowledge. Formally, filters are defined as a
space Z with n elements and p dimensions in IRp where a
mapping exists between X and Z, i.e., there is a function
f : X ! Z. Filter functions theory is also present in topolog-
ical methods [40] and the same filters used in TDA can be
applied in STAD, providing in some cases similar shapes.
However, although both share similarities conceptually, the
fundamentals are different. While STAD aims to accentuate
particular traits in the projection of a non-continuous set of
points through filter functions, in TDA the filters are the
basis of the projection itself and are used as an instrument
to generate the manifold.

The inclusion of a filter replaces the first two steps of the
STAD base algorithm (Sections 3.1.1 and 3.1.2) by a new
approach composed by three steps: define the filter
(Fig. 3a), create a reduced distance matrix based on this fil-
ter (Fig. 3b), and build a MST from the semi-complete
weighted graph (Fig. 3c).

Fig. 3. STAD algorithm extension for the integration of filters which substitutes the first two steps of the base algorithm: (a) Define the filter: The figure
illustrates the discretization of a real dimension X in three intervals (r ¼ 3). (b) Create reduced distance matrix based on the filter: Inter-nonadjacent
connections are omitted in the reduced distance matrixD�

X. (c) Build the MST from this semi-complete weighted graph. This alternative MST is calcu-
lated in three steps. 1) MSTs are computed inside each filter index with intra-edges, inter-adjacent edges are added afterwards. 2) Intra-edges are
validated through community detection. All inter-adjacent edges and intra-edges connecting different communities are removed. Intra-edges belong-
ing to the same community are fixed and become part of the final MST. 3) Additional edges connect nodes in different connected components,
thereby creating a single connected component.
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3.2.1 Define the Filter Function

Filter definition depends on data characteristics and the
purpose of the analysis. As with other topological techni-
ques, density estimates, centrality functions, orthogonal
coordinates, a subset of dimensions and intermediate algo-
rithmic results [41], [42] are also supported in STAD. The
inclusion of filters aims to enrich data exploration through
explicit prior knowledge [43] rather than hypothesis-free
research. In practice, subsets of dimensions or external data
tend to be most interpretable.

Filters in STAD are understood as a linear space where
data follows a sequential order. However, the nature of the
data included in a filter Z can be diverse, and both the filter
definition and interpretation must be adapted to it. For
example, cyclical patterns in temporal data are common
such as the day of the week or the month in a year. The last
element of this cyclical pattern is as far from the previous as
it is from the following although the sequential labeling
does not reflect this, i.e., Sunday (day 7) is close to Monday
(day 1) as is December (month 12) to January (month 1). In
these cases, filters Z must be represented in a polar space
where the repetitive pattern is preserved [44].

Filters are mostly defined as one-dimensional or two-
dimensional. Higher dimensionality although possible tends
to over-restrict the space.When filters are real, a discretization
process is required to transform them into a natural sequence
of indices. In this paper, we present the real filter transforma-
tion by specifying r as the number of intervals to divide each
dimension in. Fig. 3a illustrates the transformation of a real fil-
ter into a natural sequence. The effect of variations in the value
of r during the transformation influences the final network.
The implications are discussed in Section 3.3. The value r can
take independent values for each dimension when the filter
dimension is greater than one, but the intervals must allow
forming a single connected component network as STAD out-
put. Empty intervals in a one-dimensional filter are omitted
and the adjacency of the intervals is considered to the closest
non-empty range. In filters of higher dimensionality, empty
intervals are evaluated together with their neighbors defining
a consistent grid. The algorithm to generate a consistent grid
in STAD is provided as supplemental material, which can be
found on the Computer Society Digital Library at http://doi.
ieeecomputersociety.org/10.1109/TVCG.2020.2995465.

3.2.2 Create Reduced Distance Matrix Based on Filter

The inclusion of a filter Z establishes limits in the metric. We
can use these boundaries to introduce the effect of the filter
in STAD by reducing the distance matrix DX and in conse-
quence the complete graph GX . We define three types of
possible connections between datapoints (Fig. 3a):

� Intra-edges are all connections eij where i and j
belong to the same index.

� Inter-adjacents are all connections eij where i and j
belong to adjacent indices.

� Inter-nonadjacents are all connections eij where i or j
belong to different, non-adjacent indices.

Based on these definitions, the distance matrix DX is
reduced to D�

X by removing all non-adjacent connections
(Fig. 3b). The STAD process uses the distance matrix D�

X as

input in the estimation of the filter. The derived graph from
the distances becomes a semi-complete weighted graph G�

X

where only links within and between adjacent intervals are
considered. The reduction of connections draws networks
based on the structure of the filter highlighting properties of
data such as the temporality of time-series or abnormality
level of a centrality measure. Additionally, the performance
of STAD with filters improves due to the smaller size of the
distance matrix to be evaluated.

3.2.3 Build MST From Semi-Complete Weighted Graph

From G�
X the MST can be computed as described in

Section 3.1.2. However, one might want to ensure certain
datapoints to be close together based on specific domain
knowledge, even if they are further apart in high-dimensional
space (or vice versa). In case the specific domain knowledge is
expressed in a particular dimension, this wouldmean that the
datapoints are far apart when considering all dimensions,
but close together in the dimension under consideration.

Although the classical MST provides valid results in
STAD with filters, we propose a version of the MST which
better preserves the filter structure by prioritizing intra-
edges in the process. Artificial connections (i.e., connections
made as an artifact of splitting the data along the filters) are
detected through community detection and re-evaluated
globally. This process is split into these three steps:

1) The MSTintra is created first inside of each index
(intra-edge connections). Inter-adjacent connections
are added after the MSTintra computation to define a
single connected component (Fig. 3c left).

2) The intra-edge connections from MSTintra are evalu-
ated through community detection using the original
distances as weights. We implemented the random
walk methodology Walktrap [45] due to its adapt-
ability to short sequences. This step aims to detect
distant points in high-dimensional space that were
connected inside of each index. A sensitive configu-
ration of community detection is desired to detect
the different signals of data, as false negative divi-
sions are automatically corrected in the following
steps. All intra-edges falling in the same community
and index are preserved and fixed. Remaining edges,
i.e., discrepant intra-edge and inter-adjacent edges
are omitted and re-evaluated in the following step
(Fig. 3c center).

3) Edges from the previous steps are preserved and act
as a base, and additional edges are added until a sin-
gle connected component is created (Fig. 3c right).

3.3 STAD Network Interpretation

STAD networks generate shapes which provide both global
and local intuition of a data structure. Local signals can refer
to clusters, i.e., a homogeneous group of data points accord-
ing to their similarity, but also broader meanings, for
instance, a set of points with gradual dissimilarity (which
presents itself as a flare). The graph density provides a notion
of data distribution; homogeneous elements appear highly
interconnected in the graph and dissimilar elements appear
in non-adjacent sections of the graph. The visual edge length
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of STAD graphs indicates the similarity between the two ver-
tices (see Section 3.1.8). Specific graph layout algorithms
such as force-directed layout will search for an equilibrium
between these edge lengths and their optimization function,
e.g., to minimize overlap of nodes and/or edges [46].

The inclusion of filters intensifies specific information
contained in their dimensions. Fig. 4 exposes the effect of fil-
ters in a comparable setting where the same variable has
been split in a different number of natural indices. According
to the distance matrix detailed in Section 3.2.2, when the
number of filter indices is two or smaller, no non-adjacent
connections exist and therefore we obtain a STAD network
identical to the filter-free approach (Fig. 4b). A higher num-
ber of indices produces a fine-grained representation of the
filter definition but penalize the structural representation of
points contained in the underlying dataset X. If the number
of indices in the filter is equivalent to the number of elements
in the dataset, the generated network is forced to connect the
adjacent indices. In this case, the STAD network exposes the
structure of the filter instead of the structure of data. Addi-
tional features of the graph (e.g., node color and/or size as
used below) can aid in the interpretation of the data.

4 CASE STUDIES

We applied STAD to two real-world datasets. We present
results, derived insights extracted from the shapes and dis-
cuss choices on the filter selection. The visual analytics
approach helps to discover non-evident patterns in data

through the connection between the points describing data
shapes as flares and loops.

4.1 Barcelona Traffic

We collected a dataset from the public repository Open Data
BCN [47] which contains traffic activity in the city of Barce-
lona. The analysis was performed with all records from Octo-
ber 2017 until November 2018 (374 days). The dataset
describes measurements of traffic density collected every five
minutes in 534 locations of the city which is stored as an ordi-
nal variable from one to six, one corresponding to freely mov-
ing traffic and six to stand-still. We explored the daily changes
in the city by averaging the individual sections into a one-
dimensional time series for each day aggregated by hour. Sim-
ilarity between days was computed using euclidean distance
to identify differences at identical timestamps. In this section,
we will discuss two analyses: one without filter and one using
a two-dimensional filter composed of the week number and
the dailymean of the densest point in the city.

4.1.1 Filter-Free STAD Analysis of Barcelona Traffic

Filter-free STAD analysis results are shown in Fig. 5 where
we identify three different patterns. In this example, nodes
are colored by day of the week (blue shades correspond to
workdays from Monday to Friday, orange refers to Satur-
day, and red to Sunday) and the size of the node indicates
the mean of traffic density in that day. The most significant
signals correspond to the difference in activity between
weekdays (Fig. 5a) and weekends (Fig. 5c). The groups of
workdays on the left are highly connected indicating the
high similarity between these days. In the center of the
graph (Fig. 5b), we find a subset of days between the largest
group of workdays and weekends. This subset corresponds
to low activity days in the city; more specifically, they are
workdays in the first week of January, Easter week and
the month of August. These periods of the year traditionally
are associated with holiday periods and are distinguishable
from the rest of patterns in data. On the right of the graph,
we recognize the weekend and official holidays. Inside this
sub-network, we recognize two more groups which mostly
correspond to the two days of the weekend. Saturdays are
days with higher activity than Sundays as reflected on the
node size of the figure. Official holidays behave like a typi-
cal Sunday; we highlight Christmas day as the day of the
year with the smallest traffic activity, located at the extreme
top-right. In contrast, there are some Sundays with higher
traffic activity which have been related to some featured
event. For example, we name the Political Prisoners Demon-
stration on April 15th, the 40th Zurich Barcelona Marathon
on March 11th and the Final World Cup 2018 on July 15.
These days are associated with a higher movement of peo-
ple and the closing of some section of the city.

Although the connectivity of the network does not pro-
vide additional structural insights, the color of nodes helps
to recognize weaker signals in the graph as well. More con-
cretely, we can see that Fridays are particularly clustered.
Digging deeper into the data we can identify a peak of activ-
ity between 14:00 and 16:00 on Fridays (see image in supple-
mental material, available online). The increased traffic is
associated with departures leaving the city.

Fig. 4. Effect of the filter and comparison of the number of indices. (a)
Three-dimensional dataset (spatial dimensions X and Y, and color
dimension Z). (b) STAD network using dimensions X and Y as input and
dimension Z (color) as the filter. The real filter is transformed into two
equidistant indices. (c) Similar to (b) but dimension Z is transformed into
five equidistant indices. (d) Similar to (b) but dimension Z is transformed
into ten equidistant indices.
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The global structure of the network presents coherent
connectivity between the groups according to their traffic
density: the group with highest traffic congestion i.e., typi-
cal workdays (Fig. 5a) connects to the group with workdays
on holiday period (Fig. 5b) and this is linked to the week-
ends days (Fig. 5c).

4.1.2 STAD Analysis of Barcelona Traffic Using

Two-Dimensional Filter

We continue the analysis of Barcelona traffic by incorporat-
ing filter functions to identify additional signals. We applied
STAD using a two-dimensional filter composed of the week
number and the mean of the densest point in the city for
each day. The resulting network in Fig. 6 maintains the
three groups from the approach without filters (Fig. 5) but
additional features are revealed. Two additional loops are
present, one in the group of workdays and the other on
weekends. Further investigation indicated that these struc-
tures correspond to renovation works [48] starting in May
2018 which resulted in the closing of a transversal avenue in
the west of the city (Figs. 6e, 6f, 6g, 6h, and 6i).

The visual gaps in the graph, for instance, between
groups a and b, are created by public or bank holidays,
which end up in the cluster of the weekend days (groups c-
d and g) and generate this weaker connectivity between the
indices of the temporal filter week number. Likewise, the
gap between groups e and f is due to August present at the
center of the graph. The circular pattern of traffic between
years is reflected in the connectivity between groups f and
a. In the weekends we can identify the same separation due
to the renovation works (c-d versus h-i).

4.2 Air-Quality in Castile and Le�on

We applied STAD on the air-quality dataset collected from
the Castile and Le�on initiative in Spain [49] to illustrate
STAD as a visualization tool for the identification of pat-
terns on high-dimensional time series. The dataset contains
daily measurements of seven chemicals such as carbon
monoxide (CO), nitrogen oxide (NO), nitrogen dioxide
(NO2), ozone (O3), sulfur dioxide (SO2) and particulate
matter 10 and 2.5 (PM10 and PM2.5). The measurements
have been collected at different locations from January 1997
to June 2018. The data was aggregated by week due to the
presence of missing values. The explored multidimensional
time series contains 1,139 records with seven dimensions,
and we computed the euclidean distance to evaluate the
similarity between elements. The resulting STAD network
graph is presented at Fig. 7. The structural shape generates
an intrinsic separation of time identifying changes in the
air-quality over the years. We recognize three dense groups
of points which mainly correspond to different periods:
1997-2002 (Fig. 7a), 2003-2008 (Fig. 7b) and 2009-2018
(Fig. 7c). These visual splits identify relevant changes in the
air-quality. The vertical position of nodes provides an intui-
tion of seasonality, i.e., nodes on top of the network corre-
spond to autumn-winter dates and nodes on the bottom to
spring-summer. The coloring of nodes by seasonality is pro-
vided as supplemental material, available online.

To investigate seasonality signals further, we extend our
exploration by incorporating the week number as the filter in
STAD (Fig. 8). The network conserves the signals identified
in Fig. 7 although they also reveal additional ones. For
instance, between 1997 and 2002 (Fig. 8a) two groups are evi-
dent, corresponding to different seasons (autumn-winter
and spring-summer). In contrast, between 2009 and 2018

Fig. 5. STAD network for the characterization of traffic in Barcelona from October 2017 to November 2018, reflecting the differences between work-
days, weekends, local holidays and vacation periods. The network is visualized using the ForceAtlas2 layout. Each node represents the temporal
activity of traffic of a single day and is linked to other days with similar behavior. Color corresponds to the day of the week and size to the mean of the
traffic density. (a) Group of workdays. (b) Workdays during holiday period. (c) Weekends and official holidays.
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(Fig. 8c) the nodes are highly connected, forming a cycle. Fur-
ther analysis on the network shapes indicates the following:

� The two different groups identified at (Fig. 8a) are
mainly caused by the chemicals nitrogen oxide and
dioxide, carbon monoxide, and sulfur dioxide. These
measurements are higher during the autumn-winter
and are related to the burning of fossil fuels [50]. In
recent years, electric systems started to substitute the
previous technologies [51]. This fact is visible in the
period 2009 to 2018 (Fig. 8c) where the difference
between seasons is less evident.

� The gap between 2002 and 2003 at spring-summer
(Fig. 8b) indicates the decrease of particulate matter
PM10 and PM2.5, which is related to vehicle emis-
sions [52]. This period corresponds to new vehicle
restrictions [53].

� Different coloring of nodes may help reveal addi-
tional patterns in data (see images in supplemental
material, available online). For example, ozone fluc-
tuates according to the season period. During the
spring-summer, ozone levels are higher due to varia-
tions in sunlight and UV radiation [54]. In addition,
concentration of carbon monoxide, nitrogen, ozone,
sulfur dioxide, and particulate matter decreases
gradually over the years, reaching stability in 2010.
This finding is associated with an improvement of
air-quality [55].

5 EVALUATION

The main novelty of STAD lies in the way distances are rep-
resented as a network, providing not only a two-dimen-
sional mapping of data but also connections between nodes

Fig. 7. Filter-free STAD network describing the evolution of air-quality from 1997 to 2018. The chemicals measured were: CO, NO, NO2, O3, PM10,
PM25, and SO2. The graph displays a clear evolution of air quality identifying three different periods: (a) Between 1997 and 2002 autumn-winter and
spring-summer follow different patterns due to an increase of CO, NO, NO2, and SO2 in autumn-winter. (b) The concentration of PM10 and PM2.5
decreased in 2003 compared to 2002. (c) High connectivity of nodes reveals smaller variations of NO, NO2, and CO values across the year.

Fig. 6. STAD network using the week-number and the mean of the densest point on Barcelona traffic. ForceAtlas2 was the selected layout algorithm,
and MST was built as described in Section 3.1.2. The two loops indicate the differences in traffic activity during the year and renovations performed
in a popular avenue of the city which caused the closing of this part. The visual clusters of the network are identified with colors to indicate if they
belong to the renovation period: (a-d) No renovation of avenue Princep d’ Asturies, (e-i) Rennovation of avenue Princep d’ Asturies.
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which reinforce the communicated information in the plot.
A clear distinction needs to be made between the network
as the underlying data structure and the visual representa-
tion of that network on paper or a computer screen. Unlike
the explicit positioning of datapoints in a scatterplot, node
locations can be modified for example so that overlapping
of nodes and/or edges is reduced. At the same time, the
links in the network do not change.

In this section, we present a quantitative and a qualitative
evaluation. The quantitative comparison aims to verify if
STAD networks adequately capture the distances between
datapoints in the original multi-dimensional space, both
within the graph structure and within the projection of that
graph onto a 2D plane.With the qualitative assessmentwe col-
lect advantages and disadvantages of STAD networks over
other dimensionality reductionmethods based on scatterplots.

5.1 Quantitative Evaluation

The quantitative evaluation covers the comparison from
two angles: the STAD graph structure (as an abstract data
type) and the 2D-projection of the STAD network as a node-
link diagram. For the latter, different layouts place vertices
according to different criteria. For example, the Kamada-
Kawai layout aims to minimize the discrepancy between

distances in the graph and projections using a stress func-
tion equivalent to the NMDS approach for graphs [39].
ForceAtlas2 leverages attractive and repulsive forces based
on Barnes Hut simulations in order to obtain a layout where
edge lengths are small while vertices are well-separated.
This energy model implemented in ForceAtlas2 has an
impact on the shape of the graph, generating clusters of
nodes tighter, for example, than Kamada-Kawai [38].

We perform two main analyses in this section. First, the
preservation of the global distance was measured using the
Spearman rank correlation of the distances in the projected
space and those in the original multidimensional space
(Fig. 9) [56]. In other words, for every pair of points we com-
pared their distance in the original spacewith that in the pro-
jected space. Second, local neighborhood preservation was
determined by the proportion of neighbors preserved in the
projection compared to the original space (Fig. 10) [57].

Preservation of global distance - The Shepard diagrams in
Fig. 9 present the point-pair comparison of distances for three
dimensionality reduction methods (Figs. 9a, 9b, and 9c), the
distances in the underlying STAD graph (Fig. 9d), and those
in two graph layouts (Figs. 9e and 9f). Note that graph layouts
only consider node placement, and the visual influence of
links cannot be measured quantitatively. Whereas the STAD

Fig. 8. STAD network using week number as the filter to emphasize distinctive periods of time. ForceAtlas2 was used to draw the network, and MST
was created following Section 3.1.2. The three periods are: a) period 1997-2002, (b) period 2003-2008 and, (c) period 2009-2018.

Fig. 9. Comparison of Shepard diagrams on Barcelona traffic data. (a) NMDS, (b) t-SNE. Perplexity = 124 (the maximum value supported by the
implementation), (c) UMAP. Number of neighboring = 374 (the parameter is equal to the size of the dataset): Group I - Distances within weekends
and weekdays days; Group II - Distances between weekends and weekdays; Group III - Distances between workdays during holiday period and
weekends, (d) STAD network, (e) Kamada-Kawai layout of the STAD graph, (f) ForceAtlas2 layout of STAD graph: Group II Distances between
weekends and weekdays; Group III Distances between workdays during holiday period and weekends.
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graph itself (Fig. 9d) only employs the connections between
nodes, the layout algorithms in Figs. 9e and 9f may distort
edge lengths.

Based on the Spearman rank correlation, NMDS con-
serves distances the best between the original and projected
space (r = 0.99). This is closely followed by the STAD graph
with a Spearman correlation of 0.98. The STAD graph tends
to underestimate distant datapoints in the network struc-
ture. This effect is expected in STAD because the representa-
tion of distances depends on connections between other
nodes and by definition the STAD network creates a single
connected component. Although the placement of nodes in
two dimensions using the Kamada-Kawai layout has a
Spearman correlation lower than NMDS, the value is higher
than other dimensionality reduction techniques (t-SNE and
UMAP in Figs. 9b and 9c respectively). The t-SNE and
UMAP methods emphasize the relation of datapoints with
their closest neighbors over that with distant datapoints,
although for this analysis their neighboring parameters
were maximized in this evaluation to benefit the projection
of global data structure. Nevertheless, this results in a
penalization of global distances compared to other algo-
rithms like NMDS or STAD using a Kamada-Kawai layout.
The UMAP example (Fig. 9c) clearly shows the impact of
nearest neighbors in the Shepard diagram, where two
clouds of points can be recognized (groups I and II). Ele-
ments contained in group I represent distances within
weekends and weekdays. However, group II indicates dis-
tances between day where one is in the weekend and the
other is not. The results of STAD using a ForceAtlas2 layout
generate a Shepard diagram (Fig. 9f) with a similar structure
to UMAP. Although the Spearman correlation is lower than
UMAP, the two groups (i.e., groups I and II) are equally
identifiable. In addition, group III is more visible, corre-
sponding to distances between workdays during the holi-
day period (Fig. 5b) and weekends (Fig. 5c).

Preservation of local neighborhood - In the second analy-
sis, we measured the proportion of neighbors preserved at
different neighborhood sizes: on average, how many of the
k nearest neighbors in the original space were also within
the k nearest neighbors after projection (Fig. 10). The

abstract STAD graph preserves the local neighborhood
almost perfectly for the first six closest neighbors. Indeed,
defining nearest neighbors constitutes an essential part of
the STAD methodology: the MST graph is the starting point
for a process that iteratively adds more edges (Section 3.1.2).

The abstract graph structure is conceptually not the same
as the node-link visual representation. The position of nodes
in the node-link visual representation is limited to two or
three dimensions to project all relationships like other
dimension reduction methods do. In this example, ForceAt-
las2 obtained slightly better results than Kamada-Kawai
and the other three-dimensional projections included in the
comparison. Even though the graph drawing algorithms
aim to facilitate the legibility of networks rather than the
preservation of distances at any scale, this result indicates
that repulsion and attraction force systems tend to preserve
local neighborhoods.

5.2 Qualitative Evaluation

The main claim of STAD is that network visualization is a
flexible platform to display complex patterns in data. To
assess the usefulness of the STAD approach, we performed
interviews with eleven participants (participant A to K),
including doctoral researchers, post-doctoral researchers,
and two professors in the area of data analysis. None had
experience with STAD before the interview. We conducted
the interviews using the Barcelona traffic case, comparing
the visualization of three dimensionality reduction methods
(Figs. 11a, 11b, and 11c) and STAD using two different graph
layouts (Kamada-Kawai layout as shown in Fig. 11d and
ForceAtlas2 as illustrated in Fig. 5). A brief introduction was
given, explaining the type of data and analysis conducted. In
a first stage, all node-link diagrams were monochrome, and
the graph structure itself was the only source of information.
We asked participants to think aloud about plots, highlight
relevant regions that evoke clusters, trends, and outliers. In a
second stage, the colored plots as in Fig. 5 were presented to
confirm or modify their previous findings. To conclude the
interview, we asked their personal view about networks as
visualizationmetaphor for high-dimensional data.

During the process of analyzing the monochrome plots,
all participants identified at least the two big groups of days
corresponding mostly to workdays and weekends (groups
1 and 3 in Fig. 11). Five participants (A, C, H, I, and J)
described explicit uncertainty identifying groups in plots.
This uncertainty was mentioned during the exploration of t-
SNE or UMAP when participants were interpreting the
group in the middle (i.e., lower activity traffic during the
holiday period present in group 2 of plots in Fig. 11). They
doubted if this set was a different signal or random noise in
the sample. On the other hand, three participants (E-G)
identified the holiday group as an independent signal from
workdays and weekends group in t-SNE, UMAP, or NMDS
plots. Four participants (A, C, E, and I) identified potential
outliers. In contrast, all participants identified at least the
three groups of patterns (workdays, weekends, and holiday
periods) in the STAD plots (Fig. 11d), but none described or
mentioned outliers.

In the second part of the interviewwe used the same plots,
but with nodes colored by day of the week. Participants were

Fig. 10. Comparison of neighborhood preservation for five different sizes
(from 2 to 6) on Barcelona traffic data. The proportion of neighborhood
preservation in STAD uses the abstract graph structure defined by their
connection to estimate the value. The remaining dimensionality reduc-
tion methods and graph drawings derived from STAD employ the euclid-
ean distances of their two-dimensional projections.
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asked to review their previous selections, find similar pat-
terns, and open a discussion about STAD graphs. Ten of the
eleven participants (all except participant B) found the explo-
ration easier using STAD graphs than using scatterplots, as
the former generatedmore interpretable results to understand
the data. The most common reasoning behind this was the
presence of links which facilitate the identification of groups.
For example, participant I said: ’edges suggest the groups of
data’, participant J ’STAD imposes clusters, ..., links provide
meaningful information’, and participant D ’connections
make the interpretation of traffic easier’. Despite the difficul-
ties of participant B, he recognized that STAD networks pro-
vide insights not present in scatterplots. However, links make
it harder to identify densities in data.

Based on the findings from these interviews,we can deduce
that networks produce more defined structures than scatter-
plots, although the same information can be recognized in
both visuals. In addition, similarity between data elements is
represented not only by node positions but also by the number
of connections that a node receives. At the same time, as STAD
networks consist of a single connected component, single out-
liers are less visible thanwith othermethods.

6 DISCUSSION

In this section, we discuss some limitations of the STAD
methodology, their possible solutions and open challenges
that remain to be addressed.

6.1 Scalability

While STAD analysis of some datasets results in sparse net-
works with easily interpretable structures, other datasets
end up represented in more complicated networks. As the
algorithm works at the level of the individual datapoints,
the analysis of large datasets comes at a significant compu-
tational cost. In addition, drawing of a resultant large net-
work also becomes cumbersome.

Based on the Shepard diagrams, STAD gives a similar
accuracy as NMDS, which computes the pairwise distances
between all points in over several iterations. Therefore, run-
ning times of these two methods is comparable. However,
the computation of shortest paths is slower than euclidean
distance which penalizes STAD over NMDS as it comes to
speed. For instance, construction of the projection of the
largest dataset in this paper (air-quality dataset) takes 1.2
minutes for STAD and 1.0 minutes for NMDS. These results
are still far from local distance-preserving methods such as
t-SNE and UMAP, which takes 16 seconds for defining the
projection in two dimensions. This comparison was per-
formed in R with a single-thread and ran on an Apple lap-
top MacBook Pro (dual-core, Mid 2014).

6.1.1 Computational Scalability

In STAD, the recursive computation of distances in the
unit-distance graph comprises the main bottleneck of net-
work estimation. A possible approach to alleviate this
issue is to work with a smaller sample of the initial data-
set. Preliminary tests have indicated that such smaller
dataset retains the same visual structure as the full-size
dataset, while not suffering from the high computation
cost. The addition of edges upon the MST is a cumulative
process (Section 3.1.4), i.e., if an edge i with weight wi -
with larger weight meaning larger dissimilarity - is added
into the network all edges with smaller weight are part of
the network Ui. When the algorithm determines the opti-
mal network, it finds an edge-weight threshold which
establishes the resulting number of connections. This
optimum can be calculated on a subsample of the full-
size dataset. Multiple iterations on a down-sampled data-
set can be performed in a parallelized setting providing a
more robust threshold estimation. Other (faster and more
advanced) approaches to calculating the intermediate
STAD distance matrices are currently under investigation.

Fig. 11. Different methods applied to the Barcelona traffic data. Methods within the blue border have been used for the qualitative evaluation. (a)
NMDS (non-linear multidimensional scaling) projection. (b) t-SNE. Perplexity = 124 (maximum value supported by the implementation). (c) UMAP.
Number of neighboring = 374 (the parameter is equal to the size of the dataset). (d) STAD graph using Kamada-Kawai layout. (e) The Mapper algo-
rithm. Lenses: two-dimensional NMDS with 15 intervals and 50 percent overlap. (f) Nearest neighbor graph connecting the six closet neighbors. [1]
Weekdays; [2] Weekdays with low traffic; [3] Weekends.
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6.1.2 Visual Scalability

When large networks are considered, the number of links
might become an issue for visualization, resulting in the
dreaded “hairball”. Current approaches on graph layouts
[38] could manage up to a million nodes if the network is
sparse [46], [58]. Consequently, additional transformations
such as aggregation to reduce the number of nodes and/or
edges are still needed. A possible solution can be found in
community detection pipelines [59], such as MCLEAN [18],
that simplify this visual representation.

6.2 Addition of Edges

As mentioned in Section 6.1.1, the addition of edges from
the MST follows a sequential and cumulative procedure
based on their distances. The incremental approach may
cause edge redundancy and contribute to increasing clutter
in the plot. A non-additive and refined procedure such as
an evolutionary algorithms [60] might reduce the number
of links conserving the association with the original distance
matrix DX. Nevertheless, the use of evolutionary algorithm
would also penalize the performance on the network esti-
mation due to the assessment of crossovers in every itera-
tion. Moreover, elimination of unnecessary edges does not
change the structure of the resultant network, and such
approach does not guarantee a benefit in making new fea-
tures recognizable.

6.3 Stability and Reproducibility

The optimal number of links is dictated by the association
between DX and DU . The SA algorithm estimates an opti-
mum through a stochastic procedure which can generate
different results in each iteration. However, the correlation
curve describes a soft convexity with a quasi-constant func-
tion around the maximum.

Filters can bring additional signals in the underlying
structure of data to the foreground. In extreme cases with
very small bins, these might however fragmentize the origi-
nal structure, although these changes have demonstrated to
be reasonably robust (Fig. 4).

6.4 Evaluation

The evaluation of a STAD network comprises not only the
comparison of metrics but also the qualitative assessment of
recognized patterns as presented in Section 5. The STAD
approach is designed to maximize the relationships between
networks and distance matrices according to Pearson’s cor-
relation. Fig. 1 provides an example of the intuition gener-
ated by STAD networks using a three-dimensional point-
cloud of a horse. The continuous signals defined by the four
legs of the animal are identifiable in STAD networks
(Figs. 1d and 1e) in contrast to the overlapping produced by
the NMDS mapping (Fig. 1a). Local preserving methods
such as t-SNE (Fig. 1b) andUMAP (Fig. 1c) can still recognize
several of the data patterns, but the nature of these techni-
ques do no ensure a connected structure.

Although static representations of the STAD network as a
node-link diagram are not necessarily better or worse than
other approaches (see Fig. 10 and Table 1), the added value of
the STAD network lies in its underlying graph structure
rather than the positioning of the nodes in a 2D plane. Indeed,

adding interaction to these representations where the user
can click and drag nodes to other positions is an important
method for better understanding the structure of the network
as some nodes will be moving along as they are closely linked
to the node that is dragged,while others are not.

Therefore, it is important to evaluate STAD projections
both qualitatively (i.e., the qualitative identification of sig-
nals in data) and quantitatively (i.e., the representability of
data patterns).

6.5 Other Related Techniques

Alternative methodologies can reveal equivalent signals in
data to STAD, especially in the filter-free approach (see
Fig. 11). Nevertheless, one of the added values of STAD lies
in the preservation of data structures in lower dimensions.
By encoding the distance in edges, the uncertainty of signals
is mitigated because data elements are explicitly connected,
revealing their shape. These definite structures are especially
useful during the exploratory phase of an unknown sample.

Even though the construction of networks from non-rela-
tional data can be achieved using simpler methods such as k-
nearest neighbor graphs, the data structure using these meth-
ods are poorly perceived, as shown in Fig. 11f. The non-uni-
form connectivity in STAD enables the identification of data
with unequal densities, which is critical to recognizing differ-
ent types of patterns. In addition, determining the best number
of links in k-nearest neighbor graphs is still an open challenge
in contrast to the parameter-free STADmethodology.

The recognized shape in STAD must be seen as a data
visualization result rather than a topological one that could
be obtained through methods such as the Mapper algorithm
(see Fig. 11). The results of the Mapper algorithm are sum-
maries of data that depend on function (lenses). Although
these lenses share similarities with STAD, filter functions in
STAD are used to intensify the signals contained in the
function but without changing the original projected data.
For this reason, STAD networks can be visually compared
with and without lenses and discernible traceability
between plots can be recognized, i.e., a similar global struc-
ture with different local patterns.

7 CONCLUSION AND FUTURE WORK

With STAD, we propose a parameter-free methodology to
visualize the structure of high-dimensional datasets as net-
works, allowing for the identification of signals by means of
shapes as flares and loops. The network metaphor has been
demonstrated to provide better clarity to visualize data than

TABLE 1
Distance Preservation Measures of the

Dataset Showed in Fig. 1

Measure NMDS t-SNE UMAP STAD KK FA2

rSp 1.00 0.93 0.85 0.97 0.94 0.92
6� nn 0.58 0.62 0.60 1.00 0.67 0.51

The table describes the Spearman’s rank correlation (rSp) and the proportion of
the six nearest neighbors preserved (6� nn). Columns KK and FA2 corre-
spond to the STAD projections using Kamada-Kawai and ForceAtlas2, respec-
tively. Supplemental material, available online, provides additional plots about
the measures evaluated in the table
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other methods represented as scatterplots. Edges in the
graph correspond to similarity between datapoints; there-
fore, similarities between individual datapoints are used to
encode the higher-level patterns in the resultant graph and
the resulting visualization is a compressed projection of the
distance matrix into a free-scale space. In addition, integrat-
ing filters adds an additional perspective to the exploratory
analysis.

An R implementation is available at https://github.com/
vda-lab/stad; Python and Clojure implementations are
under development. Results presented in this paper have
been generated with this R implementation. The final graphs
included in Section 4were enhanced throughGephi [61].

Future work includes improving the efficiency of compu-
tational methods by retaining the information from previ-
ous iterations and approximating the shortest path [62]. In
addition, we also aim to devise novel visual approaches to
compare and interpret networks structures in an integrated
environment.
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